Spanning trees with a bounded number of leaves in a claw-free graph
Mikio Kano ${ }^{1}$, Aung Kyaw ${ }^{2}$, Haruhide Matsuda ${ }^{3}$, Kenta Ozeki ${ }^{4}$, Akira Saito ${ }^{5}$ and Tomoki Yamashita ${ }^{6}$
${ }^{1}$ Department of Computer and Information Sciences Ibaraki University, Hitachi, Ibaraki, 316-8511, Japan
${ }^{2}$ Department of Mathematics East Yangon University, Yangon, Myanmar
${ }^{3}$ Department of Mathematics, Shibaura Institute of Technology, Fukasaku, Minuma-ku, Saitama 337-8570, Japan
${ }^{4}$ National Institute of Informatics, Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
${ }^{5}$ Department of Computer Science and System Analysis Nihon University, Sakurajosui, Setagaya-Ku, Tokyo, 156-8550, Japan
${ }^{6}$ College of Liberal Arts and Sciences, Kitasato University, Kitasato, Minami-ku, Sagamihara 252-0373, Japan

[^0]
Abstract

For a graph H and an integer $k \geq 2$, let $\sigma_{k}(H)$ denote the minimum degree sum of k independent vertices of H. We prove that if a connected claw-free graph G satisfies $\sigma_{k+1}(G) \geq|G|-k$, then G has a spanning tree with at most k leaves. We also show that the bound $|G|-k$ is sharp and discuss the maximum degree of the required spanning trees.

Keywords: spanning tree, leaf, degree sum, claw-free graphs

1 Introduction

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. In this paper, we consider only simple graphs, which have neither loops nor multiple edges. We write $|G|$ for the order of G, that is, $|G|=|V(G)|$. For a vertex v of G, we denote by $\operatorname{deg}_{G}(v)$ the degree of v in G. A vertex of degree one is called an end-vertex, and an end-vertex of a tree is usually called a leaf. A vertex set S of G is called independent if no two vertices of S are adjacent in G. The minimum degree sum of k independent vertices of G is denoted by $\sigma_{k}(G)$, that is, if G has k independent vertices, let
$\sigma_{k}(G)=\min _{S}\left\{\sum_{x \in S} \operatorname{deg}_{G}(x): S\right.$ is an independent set of G with k vertices $\}$.
If G does not have k independent vertices, we define $\sigma_{k}(G)=+\infty$. The connectivity, the independence number and the minimum degree of G are denoted by $\kappa(G), \alpha(G)$ and $\delta(G)$, respectively. The complete graph of order n is denoted by K_{n}. The complete bipartite graph with bipartition (X, Y), where $|X|=m$ and $|Y|=n$, is denote by $K_{m, n}$. A graph G is said to be claw-free if it contains no $K_{1,3}$ as an induced subgraph.

By Dirac's Theorem, every graph G of order at least three with $\delta(G) \geq$ $\frac{1}{2}|G|$ has a hamiltonian cycle. As an immediate corollary, we can prove that every graph G with $\delta(G) \geq \frac{1}{2}(|G|-1)$ has a hamiltonian path. For general graphs, the bound $\frac{1}{2}(|G|-1)$ is sharp. For example, for a positive integer m, the complete bipartite graph $G=K_{m, m+2}$ satisfies $\delta(G)=$
$m=\frac{1}{2}(|G|-2)$, but G has no hamiltonian path. However, Matthews and Sumner [5] proved that if we restrict ourselves to the class of claw-free graphs, a considerably smaller bound on minimum degree guarantees the existence of a hamiltonian path.

Theorem 1 (Matthews and Sumner [5]) Let G be a connected clawfree graph. If $\delta(G) \geq(|G|-2) / 3$, then G has a hamiltonian path.

Ore's Theorem states that every graph of order at least three with $\sigma_{2}(G) \geq|G|$ has a hamiltonian cycle. It extends Dirac's Theorem, and implies as a corollary that every graph G with $\sigma_{2}(G) \geq|G|-1$ has a hamiltonian path.

A path of order at least two can be interpreted as a tree having exactly two leaves. From this point of view, a hamiltonian path of a graph of order at least two is a spanning tree with exactly two leaves. This interpretation may lead us to consider a spanning tree with a bounded number of leaves. Actually, Broersma and Tuinstra [1] gave a sufficient condition for a connected graph to have such a spanning tree.

Theorem 2 (Broersma and Tuinstra [1]) Let $k \geq 2$ be an integer and let G be a connected graph of order at least two. If $\sigma_{2}(G) \geq|G|-k+1$, then G has a spanning tree with at most k leaves.

The previous corollary of Ore's Theorem corresponds to the case $k=2$ of the above theorem.

Broersma and Tuinstra also proved that the bound $|G|-k+1$ of $\sigma_{2}(G)$ is sharp. However, in view of Theorem 1, for claw-free graphs, a much weaker condition may yield the same conclusion as in Theorem 2. Motivated by this observation, we study a degree sum condition for a claw-free graph to have a spanning tree with a bounded number of leaves, and give the following theorem.

Theorem 3 Let $k \geq 2$ be an integer and let G be a connected claw-free graph. If $\sigma_{k+1}(G) \geq|G|-k$, then G has a spanning tree with at most k leaves.

Note that Theorem 1 is a corollary of the case $k=2$ of the above theorem.

In the next section, we prove the above theorem. In Section 3, we investigate the maximum degree of a spanning tree and prove that under the same assumption as in Theorem 3, G has a spanning tree of maximum degree at most three with at most k leaves. In Section 4, we give concluding remarks.

Before proving Theorem 3, we first show that the bound $|G|-k$ of $\sigma_{k+1}(G)$ is sharp. Consider a graph G constructed from one complete graph K_{k+1} and $k+1$ complete graphs $K_{m}, m \geq 2$, by identifying one vertex of each K_{m} with one distinct vertex of K_{k+1} (see Figure 1). Then G is claw-free and satisfies $\sigma_{k+1}(G)=|G|-k-1$, but G has no spanning tree with at most k leaves.

Figure 1: A connected claw-free graph G that has no spanning tree with at most k leaves and satisfies $\sigma_{k+1}(G)=|G|-k-1$.

Some other results on spanning trees having at most k leaves can be found in [2] and [8].

2 Proof of Theorem 3

We begin with some additional notation. For a vertex v of a graph G, the neighborhood of v in G is denoted by $N_{G}(v)$. For a vertex set X of G, we write $N_{G}(X)=\bigcup_{x \in X} N_{G}(x)$, and the subgraph of G induced by X is
denoted by $\langle X\rangle_{G}$. We write $G-X$ for $\langle V(G)-X\rangle_{G}$, and for a vertex v, $G-\{v\}$ is briefly denoted by $G-v$.

The graph constructed from two complete graphs K_{m} and K_{n} by identifying one vertex of K_{m} with one vertex of K_{n} is called a double complete graph and denoted by $D C(m, n)$, where $m, n \geq 2$. The common vertex of K_{m} and K_{n} is called the center, and the other vertices are called non-central vertices (See Figure 2). Note that the order of $D C(m, n)$ is $m+n-1$, and the path of order three is a double complete graph $D C(2,2)$. Let \mathcal{D} denote the set of all double complete graphs.

When we consider a path or a cycle, we always assign an orientation. Let W be a path or a cycle, and let $v \in V(W)$. Then we denote by $v^{-(W)}$ and $v^{+(W)}$ the predecessor and the successor of W, respectively. We write $v^{--(W)}$ instead of $\left(v^{-(W)}\right)^{-(W)}$. For $A \subset V(W)$, let $A^{-(W)}=\left\{v^{-(W)}: v \in\right.$ $A\}$. If W is clear from the context, we often omit " (W) " and write v^{-}, v^{+}, v^{--}and A^{-}instead of $v^{-(W)}, v^{+(W)}, v^{--(W)}$ and $A^{-(W)}$, respectively. A path which starts at a vertex u and ends at a vertex v is called a $u v$-path. For a path P and vertices $u, v \in V(P)$, a subpath of P with ends u and v is denoted by $P(u, v)$. For subgraphs H_{1} and H_{2} of a graph G, we define $H_{1}+H_{2}$ by $H_{1}+H_{2}=\left(V\left(H_{1}\right) \cup V\left(H_{2}\right), E\left(H_{1}\right) \cup E\left(H_{2}\right)\right)$. When we consider this operation, an edge is often considered as a subgraph isomorphic to K_{2}. For example, for $u v \in E(G), H_{1}+u v=\left(V\left(H_{1}\right) \cup\{u, v\}, E\left(H_{1}\right) \cup\{u v\}\right)$. For further explanation of terminologies and notation, we refer the reader to [9].

Figure 2: The double complete graph $D C(m, n)$, whose order is $m+n-1$.

Enomoto [3], Jung [4] and Nara [6] implicitly characterized the connected graphs G such that G satisfies $\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y) \geq|G|-1$ for every
pair of vertices x and y of G which are end-vertices of some hamiltonian path of G, but G has no hamiltonian cycle. The next lemma is a corollary of this characterization. We give its proof for the self-containedness of the paper.

Lemma 4 Let G be a claw-free graph having a hamiltonian path. Suppose that $\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y) \geq|G|-1$ for every pair of vertices x and y which are end-vertices of some hamiltonian path. Then G has a hamiltonian cycle, or G is a double complete graph.

Proof. Assume G has no hamiltonian cycle. Let P be a hamiltonian path and let x and y be the first and the last vertices of P, respectively. By the assumption, $x y \notin E(G)$. If $N_{G}(x)^{-} \cap N_{G}(y) \neq \emptyset$, then $P(x, v)+$ $v y+P\left(y, v^{+}\right)+v^{+} x$, where $v \in N_{G}(x)^{-} \cap N_{G}(y)$, is a hamiltonian cycle, a contradiction. Thus, $N_{G}(x)^{-} \cap N_{G}(y)=\emptyset$. Since $N_{G}(x)^{-} \cup N_{G}(y) \subset$ $V(G)-\{y\}$ and $\left|N_{G}(x)^{-} \cup N_{G}(y)\right|=\left|N_{G}(x)^{-}\right|+\left|N_{G}(y)\right|=\left|N_{G}(x)\right|+$ $\left|N_{G}(y)\right|=\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y) \geq|G|-1$, we have $N_{G}(x)^{-} \cup N_{G}(y)=$ $V(G)-\{y\}$ and $\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y)=|G|-1$. On the other hand, since $N_{G}(x) \cup N_{G}(y) \subset V(G)-\{x, y\}$ and $\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y) \geq|G|-1$, we have $N_{G}(x) \cap N_{G}(y) \neq \emptyset$. We consider two cases.

Case 1. $\left|N_{G}(x) \cap N_{G}(y)\right|=1$.
In this case, $N_{G}(x) \cup N_{G}(y)=V(G)-\{x, y\}$. Let $N_{G}(x) \cap N_{G}(y)=$ $\{z\}$. Since $N_{G}(x)^{-} \cap N_{G}(y)=\emptyset$ and $N_{G}(x) \cup N_{G}(y)=V(G)-\{x, y\}$, $v \in N_{G}(x)-\left\{x^{+}\right\}$implies $v^{-} \in N_{G}(x)$. This implies $P\left(x^{+}, z\right) \subset N_{G}(x)$. Similarly, $P\left(z, y^{-}\right) \subset N_{G}(y)$. Since $N_{G}(x) \cap N_{G}(y)=\{z\}$, we have $N_{G}(x)=P\left(x^{+}, z\right)$ and $N_{G}(y)=P\left(z, y^{-}\right)$.

Let $x_{1} \in P\left(x^{+}, z^{-}\right)$. Then $x_{1}^{+} \in N_{G}(x)$ and $P\left(x_{1}, x\right)+x x_{1}^{+}+P\left(x_{1}^{+}, y\right)$ is a hamiltonian path of G. If $N_{G}\left(x_{1}\right) \cap P\left(z^{+}, y\right) \neq \emptyset$, then $P\left(x, x_{1}\right)+$ $x_{1} y_{1}+P\left(y_{1}, y\right)+y y_{1}^{-}+P\left(y_{1}^{-}, x_{1}^{+}\right)+x_{1}^{+} x$, where $y_{1} \in N_{G}\left(x_{1}\right) \cap P\left(z^{+}, y\right)$, is a hamiltonian cycle of G, a contradiction. Therefore, $N_{G}\left(x_{1}\right) \subset P(x, z)-$ $\left\{x_{1}\right\}$. Since $\operatorname{deg}_{G}\left(x_{1}\right)+\operatorname{deg}_{G}(y) \geq|G|-1$ by the assumption, we have $N_{G}\left(x_{1}\right) \cap N_{G}(y)=\{z\}$. The we can apply the same argument as in the previous paragraph to x_{1} and y, and obtain $N_{G}\left(x_{1}\right)=P(x, z)-\left\{x_{1}\right\}$. This
implies that z is a cutvertex of G and $P(x, z)$ induces a complete graph. By symmetry, $P(z, y)$ also induces a complete graph. Therefore, G is a double complete graph.

Case 2. $\left|N_{G}(x) \cap N_{G}(y)\right| \geq 2$.
In this case, there exist $x_{0} \in N_{G}(x)$ and $y_{0} \in N_{G}(y)$ such that $x_{0} \in$ $P\left(y_{0}^{+}, y\right)$. Choose such x_{0} and y_{0} so that $P\left(y_{0}, x_{0}\right)$ is as short as possible. Since $N_{G}(x)^{-} \cap N_{G}(y)=\emptyset, y_{0}^{+} \neq x_{0}$.

Since $x y \notin E(G)$ and $N_{G}(x)^{-} \cup N_{G}(y)=V(G)-\{y\}, x_{0}^{--}$exists and $x_{0}^{--} \in N_{G}(x)^{-} \cup N_{G}(y)$. Since $x_{0}^{-} \notin N_{G}(x)$ by the choice of $\left(x_{0}, y_{0}\right)$, $x_{0}^{--} \in N_{G}(y)$. Again by the choice of $\left(x_{0}, y_{0}\right)$, we have $y_{0}=x_{0}^{--}$. Since $P\left(y_{0}^{+}, x\right)+x x_{0}+P\left(x_{0}, y\right)$ and $P\left(y_{0}^{+}, y\right)+y y_{0}+P\left(y_{0}, x\right)$ are both hamiltonian paths, we can apply the same argument as that for P to these paths, and obtain $\operatorname{deg}_{G}\left(y_{0}^{+}\right)+\operatorname{deg}_{G}(y)=\operatorname{deg}_{G}\left(y_{0}^{+}\right)+\operatorname{deg}_{G}(x)=\operatorname{deg}_{G}(y)+\operatorname{deg}_{G}(x)=$ $|G|-1$, which yields $\operatorname{deg}_{G}(x)=\operatorname{deg}_{G}(y)=\operatorname{deg}_{G}\left(y_{0}^{+}\right)=\frac{1}{2}(|G|-1)$.

Let $C=P\left(x, y_{0}\right)+y_{0} y+P\left(y, x_{0}\right)+x_{0} x$. Then $V(C)=V(G)-\left\{y_{0}^{+}\right\}$. Let $C=v_{0} v_{1} \ldots v_{|G|-2} v_{0}$. If y_{0}^{+}is adjacent to a consecutive vertices of C, then we can insert y_{0}^{+}to this cycle to obtain a hamiltonian cycle of G, contradicting the assumption. Since $\operatorname{deg}_{G}\left(y_{0}^{+}\right)=\frac{1}{2}(|G|-1), y_{0}^{+}$is adjacent to every other vertex of C. Let $v_{i} \in N_{G}\left(y_{0}^{+}\right)$. Then $v_{i-2} \in N_{G}\left(y_{0}^{+}\right)$. Since $\left\{v_{i-1}, v_{i+1}, y_{0}^{+}\right\} \subset N_{G}\left(v_{i}\right)$ and G is claw-free, we have $v_{i-1} v_{i+1} \in E(G)$. Then by replacing $v_{i-2} v_{i-1} v_{i} v_{i+1}$ in C with $v_{i-2} y_{0}^{+} v_{i} v_{i-1} v_{i+1}$, we have a hamiltonian cycle of G. This is a contradiction, and the lemma follows.

Win [10] introduced a k-ended system to prove the existence of a spanning tree with at most k leaves. In this paper, we modify the definition of a k-ended system and define a k-extended system. It plays an important role in the proof of our main theorem

Let G be a connected claw-free graph, and F be a subgraph of G. The set of components of F is denoted by $\mathcal{C}(F)$. We call F an extended system if each component of F is a path, a cycle or a double complete graph. For an extended system F, we define a mapping f from $\mathcal{C}(F)$ to $\{1,2\}$ as follows.

For every $C \in \mathcal{C}(F)$,

$$
f(C)= \begin{cases}1 & \text { if } C \text { is } K_{1}, K_{2}, \text { a cycle or a double complete graph, } \\ 2 & \text { otherwise (i.e., a path of order at least four) }\end{cases}
$$

and define

$$
f(F)=\sum_{C \in \mathbb{C}_{(F)}} f(C)
$$

Let $\mathcal{C}_{i}(F)=\{C \in \mathcal{C}(F): f(C)=i\}$ for $i=1,2$. An extended system F is called a k-extended system if $f(F) \leq k$.

The following lemma is an easy but important observation.

Lemma 5 Let G be a claw-free graph and D be an induced double complete subgraph of G. If a vertex $v \in V(G)-V(D)$ is adjacent to the center of D, then v is also adjacent to a non-central vertex of D.

Proof. Let D_{1} and D_{2} be the two blocks of D. Then both D_{1} and D_{2} are complete graphs. Let x be the center of D and let $x_{i} \in D_{i}-\{x\}$ $(i=1,2)$. Since D is an induced subgraph of $G, x_{1} x_{2} \notin E(G)$. Since $\left\{x_{1}, x_{2}, v\right\} \subset N_{G}(x)$ and G is claw-free, $\left\{x_{1} v, x_{2} v\right\} \cap E(G) \neq \emptyset$.

The next lemma shows a relationship between a k-extended system and a spanning tree with at most k leaves in a claw-free graph.

Lemma 6 Let $k \geq 2$ be an integer and G be a connected claw-free graph. If G has a spanning extended system F_{0}, then G has a spanning tree with at most $f\left(F_{0}\right)$ leaves. In particular, if G has a spanning k-extended system, then G has a spanning tree with at most k leaves.

Proof. Take a spanning extended system F with $f(F) \leq f\left(F_{0}\right)$ so that the number of double complete graphs is as small as possible. Then every double complete graph of F is an induced subgraph of G since if two noncentral vertices of a double complete graph D of F are joined by an edge e of G, then $D+e$ has a hamiltonian cycle, and so D should be replaced by this hamiltonian cycle.

Since G is connected, there exists a minimal set X of edges such that F together with X forms a connected spanning subgraph of G. We shall construct a spanning tree with at most k leaves consisting of F and X. By Lemma 5, we may assume that no edge in X is incident with the center of a double complete graph. For any double complete graph D of F, there exists an edge $e_{D} \in X$ incident with a vertex v_{D} of D, where v_{D} is not the center of D. Then D has a hamiltonian path starting at v_{D}, and we replace D with this hamiltonian path.

For any cycle C of F, there exists an edge $e_{C} \in X$ incident with a vertex v_{C} of C. Delete an edge of C incident with v_{C}. By repeating the above procedure for every double complete graph and every cycle of F, we obtain a spanning tree T. By the construction, for each $C \in \mathcal{C}(F)$, the number of leaves of T contained in C is at most $f(C)$.

Hence T has at most $f(F) \leq f\left(F_{0}\right)$ leaves.

We call a k-extended system F of G a maximal k-extended system if G has no k-extended system F^{\prime} such that $V(F)$ is a proper subset of $V\left(F^{\prime}\right)$. In order to prove our theorem, we need the following lemma.

Lemma 7 Suppose that a graph G does not have a spanning k-extended system. Let F be a maximal $(k+1)$-extended system of G. Then G does not have a k-extended system F^{\prime} with $V\left(F^{\prime}\right)=V(F)$. In particular, F is not a k-extended system, and so $f(F)=k+1$.

Proof. Let F be a maximal $(k+1)$-extended system of G. Assume that G has a k-extended system F^{\prime} with $V\left(F^{\prime}\right)=V(F)$. Since G does not have a spanning k-extended system, there exists a vertex $v \in V(G)-V\left(F^{\prime}\right)$, and thus G has a $(k+1)$-extended system $F^{\prime} \cup\{v\}$, which contradicts the maximality of F.

By Lemma 6, in order to prove our Theorem 3, it suffices to prove the following theorem.

Theorem 8 Let $k \geq 2$ be an integer and G be a claw-free graph. If $\sigma_{k+1}(G) \geq|G|-k$, then G has a spanning k-extended system.

Proof. Suppose that G has no spanning k-extended system. Take a maximal $(k+1)$-extended system F so that
(F1) $\sum_{P \in \mathcal{C}_{2}(F)}|P|$ is as large as possible,
(F2) The number of cycles in $\mathfrak{C}_{1}(F)$ is as large as possible subject to (F1), and
(F3) $\sum_{P \in \mathcal{C}_{2}(F)}\left(\operatorname{deg}_{\langle V(P)\rangle_{G}}\left(x_{P}\right)+\operatorname{deg}_{\langle V(P)\rangle_{G}}\left(y_{P}\right)\right)$ is as small as possible, subject to (F1) and (F2), where x_{P} and y_{P} are the end-vertices of P.

By Lemma $7, f(F)=k+1$. We begin with a simple but important observation.

Claim 1 For each $D \in \mathcal{C}_{1}(F)$ and for each $v \in V(D)$ that is not the center of D if D is a double complete graph, D has a hamiltonian path containing v as one of its end-vertices.

The next claim follows from the condition (F2) and the same argument as in the first paragraph of the proof of Lemma 6.

Claim 2 Every double complete graph D of F is an induced subgraph of G.

Next, we investigate the adjacency between the components of F.

Claim 3 The following three statements hold.
(i) No two components of $\mathcal{C}_{1}(F)$ are connected by an edge of G.
(ii) No end-vertex of a path in $\mathcal{C}_{2}(F)$ is connected to a component of $\mathcal{C}_{1}(F)$ by an edge of G.
(iii) No two end-vertices of two distinct paths or of the same path in $\mathcal{C}_{2}(F)$ are joined by an edge of G

Proof. (i) Assume that two components Q_{1} and Q_{2} of $\mathcal{C}_{1}(F)$ are joined by an edge e of G. By Lemma 5 , we may assume that no end-vertex of e is the center of a double complete graph. So $Q_{1}+e+Q_{2}$ contains a hamiltonian path P_{0}. By replacing Q_{1} and Q_{2} of F by P_{0}, we obtain another maximal
$(k+1)$-extended system F^{\prime} on $V(F)$. If $\left|P_{0}\right| \geq 4$ this contradicts the condition (F1). If $\left|P_{0}\right| \leq 3$, then $f\left(P_{0}\right)=1$ and hence F^{\prime} is a k-extended system, which contradicts Lemma 7.
(ii) If an end-vertex of a path $P \in \mathcal{C}_{2}(F)$ is joined to a component $Q \in$ $\mathcal{C}_{1}(F)$ by an edge e of G, then by an argument similar to the one in (i), we see that $P+e+Q$ has a hamiltonian path. Thus, we can derive a contradiction by Lemma 7 .
(iii) If two end-vertices of two paths or of the same path in $\mathcal{C}_{2}(F)$ are joined by an edge of G, then we can obtain a k-extended system with vertex set $V(F)$, which contradicts Lemma 7.

For every component $Q \in \mathcal{C}_{1}(F)$, we take one vertex x_{Q} from Q so that x_{Q} is a non-central vertex of Q if Q is a double complete graph. For every path $P \in \mathcal{C}_{2}(F)$, let x_{P} and y_{P} be the two end-vertices of P. Define $\operatorname{End}(F)$ by

$$
\operatorname{End}(F)=\bigcup_{Q \in \mathfrak{C}_{1}(F)}\left\{x_{Q}\right\} \cup \bigcup_{P \in \mathfrak{C}_{2}(F)}\left\{x_{P}, y_{P}\right\}
$$

Then $|\operatorname{End}(F)|=f(F)=k+1$ by Lemma 7. Claim 3 and Lemma 5 yield the next two claims.

Claim $4 \operatorname{End}(F)$ is an independent set of G.

Claim 5 For every component $Q \in \mathcal{C}_{1}(F)$ of F and the vertex $\left\{x_{Q}\right\}=$ $\operatorname{End}(F) \cap V(Q)$, it follows that

$$
\sum_{x \in \operatorname{End}(F)}\left|N_{G}(x) \cap V(Q)\right|=\left|N_{G}\left(x_{Q}\right) \cap V(Q)\right| \leq|Q|-1=|Q|-f(Q)
$$

Now we measure the neighborhood of $\operatorname{End}(F)$ in a path of $\mathcal{C}_{2}(F)$.

Claim 6 Let P be a path in $\mathcal{C}_{2}(F)$. Then for each distinct pair of vertices z, w in $\operatorname{End}(F)-\left\{x_{P}, y_{P}\right\}$, the following statements hold.
(i) $N_{G}(z) \cap N_{G}(w) \cap V(P)=\emptyset$.
(ii) $N_{G}\left(x_{P}\right)^{-} \cap N_{G}\left(y_{P}\right) \cap V(P)=\emptyset$.
(iii) $N_{G}(z)^{-} \cap N_{G}\left(y_{P}\right) \cap V(P)=\emptyset$ and $N_{G}(z)^{+} \cap N_{G}\left(x_{P}\right) \cap V(P)=\emptyset$.
(iv) $N_{G}(z) \cap N_{G}\left(x_{P}\right) \cap V(P)=\emptyset$.

Proof. Let Q and R be the components of F containing z and w, respectively.
(i) Suppose $N_{G}(z) \cap N_{G}(w) \cap V(P) \neq \emptyset$ and take a vertex $v \in N_{G}(z) \cap$ $N_{G}(w) \cap V(P)$. Then $v \neq x_{P}, y_{P}$ by Claim 4. Since $\left\{z, w, v^{-}\right\} \subset N_{G}(v)$ and G is claw-free, $z v^{-} \in E(G)$ or $w v^{-} \in E(G)$. By symmetry, we may assume that $z v^{-} \in E(G)$. If $Q \neq R$, then replace P, Q, R of F by two hamiltonian paths Q^{\prime} and R^{\prime} in $P\left(x_{P}, v^{-}\right)+v^{-} z+Q$ and $P\left(y_{P}, v\right)+v w+R$, respectively. Then we obtain a new $(k+1)$-extended system F^{\prime} on $V(F)$. If $f\left(Q^{\prime}\right)+f\left(R^{\prime}\right)<f(P)+f(Q)+f(R)$, then F^{\prime} is a k-extended system, which contradicts Lemma 7. Thus, $f\left(Q^{\prime}\right)+f\left(R^{\prime}\right) \geq f(P)+f(Q)+f(R)$. This is possible only if $\left\{Q^{\prime}, R^{\prime}\right\} \subset \mathcal{C}_{2}\left(F^{\prime}\right)$ and $\{Q, R\} \subset \mathcal{C}_{1}(F)$. However, this contradicts the condition (F1). If $Q=R$, then Q is a path whose end-vertices are z and w and $P\left(x_{P}, v^{-}\right)+v^{-} z+Q+w v+P\left(v, y_{P}\right)$ is a hamiltonian path of $\langle V(P) \cup V(Q)\rangle_{G}$, and by replacing P and Q with this path, we have a k-extended system on $V(F)$, contradicting Lemma 7 .
(ii) If $N_{G}\left(x_{P}\right)^{-} \cap N_{G}\left(y_{P}\right) \cap V(P) \neq \emptyset$, then $\langle V(P)\rangle_{G}$ has a hamiltonian cycle, and so G has a k-extended system with vertex set $V(F)$, which contradicts Lemma 7.
(iii) By symmetry, it suffices to show that $N_{G}(z)^{-} \cap N_{G}\left(y_{P}\right) \cap V(P)=\emptyset$. Assume that there exists a vertex $v \in N_{G}(z)^{-} \cap N_{G}\left(y_{P}\right) \cap V(P)$. Then $P\left(x_{P}, v\right)+v y_{P}+P\left(y_{P}, v^{+}\right)+v^{+} z+Q$ has a hamiltonian path of $\langle V(P) \cup$ $V(Q)\rangle_{G}$, and so by replacing P and Q of F with this path, we have a k-extended system on $V(F)$. This contradicts Lemma 7.
(iv) Suppose that there exists a vertex v in $N_{G}(z) \cap N_{G}\left(x_{P}\right) \cap V(P)$. Then $v \neq y_{P}$ by Claim 4. Since $\left\{v^{+}, x_{p}, z\right\} \subset N_{G}(v)$ and G is claw-free, we have $v^{+} z \in E(G)$ by (iii) and Claim 4. Suppose that Q is a path of order at least four. If $v \neq x_{P}^{+}$, then replace P and Q by the cycle $P\left(x_{P}, v\right)+v x_{P}$ and a hamiltonian path of $P\left(y_{P}, v^{+}\right)+v^{+} z+Q$. If $v=x_{P}^{+}$, replace P and Q with $x_{P} v$ and a hamiltonian path of $P\left(y_{P}, v^{+}\right)+v^{+} z+Q$. In either case, G has a k-extended system on $V(F)$, which contradicts Lemma 7 .

Next suppose that Q is a cycle. Let us denote the two vertices of Q adjacent to z by z^{-}and z^{+}. Then since $\left\{v, z^{-}, z^{+}\right\} \subset N_{G}(z)$ and
G is claw-free, we may assume that $z^{-} v \in E(G)$ or $z^{-} z^{+} \in E(G)$ by symmetry. If $z^{-} v \in E(G)$, then $P\left(x_{P}, v\right)+v z^{-}+Q+z v^{+}+P\left(v^{+}, y_{P}\right)$ has a hamiltonian path, and by replacing P and Q with this path, we again have a k-extended system on $V(F)$, a contradiction. Therefore we may assume that $z^{-} z^{+} \in E(G)$. If the order of Q is at least four, replace P and Q with the path $P^{\prime}=P\left(x_{P}, v\right)+v z+z v^{+}+P\left(v^{+}, y_{P}\right)$ and the cycle $Q-z+z^{-} z^{+}$. If the order of Q is three, replace P and Q with the path P^{\prime} and $z^{-} z^{+}$. Then in either case, we obtain a maximal $(k+1)$-extended system with $\sum_{P \in \mathfrak{C}_{2}\left(F^{\prime}\right)}|P|>\sum_{P \in \mathfrak{C}_{2}(F)}|P|$. This contradicts the condition (F1).

We finally consider the case that Q is K_{1}, K_{2} or a double complete graph. In this case, consider $Q-z$ and the path $P^{\prime}=P\left(x_{P}, v\right)+v z+$ $z v^{+}+P\left(v^{+}, y_{P}\right)$. Note that $Q-z$ is empty, K_{1}, K_{2}, a double complete graph or a complete graph of order at least three. In the last case, $Q-z$ has a hamiltonian cycle. Therefore, by replacing P and Q with P^{\prime} and a certain subgraph of $Q-z$, we obtain a maximal $(k+1)$-extended system F^{\prime} with $\sum_{P \in \mathfrak{C}_{2}\left(F^{\prime}\right)}|P|>\sum_{P \in \mathfrak{C}_{2}(F)}|P|$. This contradicts the choice (F1) of F.

Claim 7 For each $P \in \mathcal{C}_{2}(F)$,

$$
\sum_{x \in \operatorname{End}(F)}\left|N_{G}(x) \cap V(P)\right| \leq|P|-f(P)
$$

Proof. First assume that $N_{G}(z) \cap V(P)=\emptyset$ for every $z \in \operatorname{End}(F)-$ $\left\{x_{P}, y_{P}\right\}$. Let $H=\langle V(P)\rangle_{G}$. By the condition (F3), for each hamiltonian path P^{*} of H,

$$
\begin{aligned}
\sum_{Q \in \mathcal{C}_{2}(F)-\{P\}}\left(\operatorname{deg}_{\langle V(Q)\rangle_{G}}\left(x_{Q}\right)\right. & \left.+\operatorname{deg}_{\langle V(Q)\rangle_{G}}\left(y_{Q}\right)\right)+\operatorname{deg}_{H}\left(x_{P^{*}}\right)+\operatorname{deg}_{H}\left(y_{P^{*}}\right) \\
& \geq \sum_{Q \in \mathcal{C}_{2}(F)}\left(\operatorname{deg}_{\langle Q\rangle_{G}}\left(x_{Q}\right)+\operatorname{deg}_{\langle Q\rangle_{G}}\left(y_{Q}\right)\right),
\end{aligned}
$$

which implies $\operatorname{deg}_{H}\left(x_{P^{*}}\right)+\operatorname{deg}_{H}\left(y_{P^{*}}\right) \geq \operatorname{deg}_{H}\left(x_{P}\right)+\operatorname{deg}_{H}\left(y_{P}\right)$. Thus, if $\operatorname{deg}_{H}\left(x_{P}\right)+\operatorname{deg}_{H}\left(y_{P}\right) \geq|H|-1$, then by Lemma 4 , either H has a hamiltonian cycle or H is a double complete graph. Then whichever occurs,
we can replace P with an appropriate subgraph of H to obtain a k-extended system on $V(F)$, which contradicts Lemma 7. Therefore,

$$
\begin{aligned}
\sum_{x \in \operatorname{End}(F)}\left|N_{G}(x) \cap V(P)\right| & =\left|N_{G}\left(x_{P}\right) \cap V(P)\right|+\left|N_{G}\left(y_{P}\right) \cap V(P)\right| \\
& =\operatorname{deg}_{H}\left(x_{P}\right)+\operatorname{deg}_{H}\left(y_{P}\right) \leq|H|-2=|P|-f(P)
\end{aligned}
$$

Next we assume that $N_{G}\left(z_{1}\right) \cap V(P) \neq \emptyset$ for some vertex $z_{1} \in \operatorname{End}(F)-$ $\left\{x_{P}, y_{P}\right\}$. Let $v \in N_{G}\left(z_{1}\right) \cap V(P), P_{1}=P\left(x_{P}, v^{-}\right)$and $P_{2}=P\left(v^{+}, y_{P}\right)$. Then $|P|=\left|P_{1}\right|+\left|P_{2}\right|+1$. By Claim 6 (i)-(iv), $\left(N_{G}\left(x_{P}\right) \cap V\left(P_{1}\right)\right)^{-}$, $N_{G}\left(y_{P}\right) \cap V\left(P_{1}\right)$ and

$$
\left(\left(N_{G}(z) \cap V\left(P_{1}\right)\right)^{-}\right)_{z \in \operatorname{End}(F)-\left\{x_{P}, y_{P}\right\}}
$$

are well-defined and these $k+1$ sets are pairwise disjoint. Moreover, they do not contain v^{-}by Claim 6 (iii). Thus

$$
\sum_{z \in \operatorname{End}(F)}\left|N_{G}(z) \cap V\left(P_{1}\right)\right| \leq\left|P_{1}\right|-1
$$

By symmetry of P_{1} and P_{2}, we obtain $\sum_{z \in \operatorname{End}(F)}\left|N_{G}(z) \cap V\left(P_{2}\right)\right| \leq\left|P_{2}\right|-1$. By Claim 6 (i) and (iv), v is not adjacent to any vertex in $\operatorname{End}(F)-\left\{z_{1}\right\}$, and so $\sum_{z \in \operatorname{End}(F)}\left|N_{G}(z) \cap\{v\}\right|=1$. By summing these three inequalities, we have

$$
\begin{aligned}
\sum_{z \in \operatorname{End}(F)}\left|N_{G}(z) \cap V(P)\right| & =\sum_{z \in \operatorname{End}(F)}\left|N_{G}(z) \cap V\left(P_{1}\right)\right|+\sum_{z \in \operatorname{End}(F)}\left|N_{G}(z) \cap V\left(P_{2}\right)\right| \\
& +\sum_{z \in \operatorname{End}(F)}\left|N_{G}(z) \cap\{v\}\right| \\
& \leq\left|P_{1}\right|-1+\left|P_{2}\right|-1+1 \\
& =|P|-2=|P|-f(P) .
\end{aligned}
$$

We now prove Theorem 8. Assume that $N_{G}(z) \cap N_{G}(w)-V(F) \neq \emptyset$ for some $z, w \in \operatorname{End}(F)$ with $z \neq w$. Let P and Q be the components of F that contain z and w, respectively (possibly $P=Q$). Let $a \in N_{G}(z) \cap$ $N_{G}(w)-V(F)$. If $P \neq Q$, then since P and Q have hamiltonian paths which contain z and w as an end-vertex, respectively, $P+z a+a w+Q$ contains a hamiltonian path. By replacing P and Q with this path, we
obtain a new $(k+1)$-extended system F^{\prime} with $V\left(F^{\prime}\right)=V(F) \cup\{a\}$. This contradicts the maximality of F. If $P=Q$, then we may assume $z=x_{P_{0}}$ and $w=y_{P_{0}}$ for some P_{0}. Then by replacing P with a cycle $P+a z+z w$, we again obtain a $(k+1)$-extended system F^{\prime} with $V\left(F^{\prime}\right)=V(F) \cup\{a\}$, a contradiction. Therefore, we have $N_{G}(z) \cap N_{G}(w)-V(F)=\emptyset$ for each distinct pair of vertices z and w in $\operatorname{End}(F)$. Hence

$$
\sum_{z \in \operatorname{End}(F)}\left|N_{G}(z) \cap(V(G)-V(F))\right| \leq|V(G)-V(F)|=|G|-|F| .
$$

Then by Claims 5 and 7 , we obtain

$$
\begin{aligned}
\sum_{z \in \operatorname{End}(F)} \operatorname{deg}_{G}(z)= & \sum_{C \in \mathcal{C}(F)} \sum_{z \in \operatorname{End}(F)}\left|N_{G}(z) \cap V(C)\right| \\
& +\sum_{z \in \operatorname{End}(F)}\left|N_{G}(z) \cap(V(G)-V(F))\right| \\
\leq & \sum_{C \in \mathcal{C}(F)}(|C|-f(C))+|G|-|F| \\
= & |F|-f(F)+|G|-|F| \\
= & |G|-k-1
\end{aligned}
$$

This contradicts the condition $\sigma_{k+1}(G) \geq|G|-k$, and Theorem 8 follows.

3 Maximum Degree

A tree of maximum degree at most k is called a k-tree. Under the same assumption as that of Theorem 3, we can actually guarantee the existence of a 3 -tree with at most k leaves.

Theorem 9 Let $k \geq 2$ be an integer and let G be a connected claw-free graph. If $\sigma_{k+1}(G) \geq|G|-k$, then G has a spanning 3 -tree with at most k leaves.

In order to prove the above theorem, it suffices to prove the following lemma.

Lemma 10 Let $k \geq 2$ be an integer. If a connected claw-free graph G has a spanning tree with at most k leaves, then G has a spanning 3 -tree with at most k leaves.

Proof. Let u be an arbitrary vertex in G, and consider every spanning tree as a rooted tree with root u. Choose a spanning tree T with at most k leaves so that $\sum_{x \in V(T)} \operatorname{dist}_{T}(u, x)$ is as large as possible, where $\operatorname{dist}_{T}(x, y)$ is the distence in T between two vertices x and y. Assume T has a vertex w of degree at least four. Then w has at least three children, and since G is claw-free, w has a pair of children v_{1} and v_{2} which are adjacent with each other in G. Let $T^{\prime}=T-w v_{1}+v_{1} v_{2}$. Then T^{\prime} is a spanning tree of G, and $\operatorname{deg}_{T^{\prime}}(w)=\operatorname{deg}_{T}(w)-1, \operatorname{deg}_{T^{\prime}}\left(v_{2}\right)=\operatorname{deg}_{T}\left(v_{2}\right)+1$ and $\operatorname{deg}_{T^{\prime}}(x)=\operatorname{deg}_{T}(x)$ for each $x \in V(G)-\left\{w, v_{2}\right\}$. Since $\operatorname{deg}_{T}(w) \geq 4, T^{\prime}$ does not have the larger number of leaves than T.

Let $x \in V(G)$. Then T has a unique $u x$-path P. If P still exists in T^{\prime}, we have $\operatorname{dist}_{T}(u, x)=\operatorname{dist}_{T^{\prime}}(u, x)$. If P does not exist in T^{\prime}, then $w v_{1} \in E(P)$ and $P^{\prime}=P(u, w)+w v_{2}+v_{2} v_{1}+P\left(v_{1}, x\right)$ is a unique $u x$-path in T^{\prime}. This implies $\operatorname{dist}_{T^{\prime}}(u, x)=\operatorname{dist}_{T}(u, x)+1$. Therefore, $\operatorname{dist}_{T^{\prime}}(u, x) \geq$ $\operatorname{dist}_{T}(u, x)$ for each $x \in V(G)$ and $\operatorname{dist}_{T^{\prime}}(u, v)>\operatorname{dist}_{T}(u, v)$. These imply $\sum_{x \in V(G)} \operatorname{dist}_{T^{\prime}}(u, x)>\sum_{x \in V(G)} \operatorname{dist}_{T}(u, x)$. This contradicts the choice of T, and hence we have $\Delta(T) \leq 3$

4 Concluding Remarks

Matthews and Sumner [5] proved that a 2-connected claw-free graph of minimum degree at least $\frac{1}{3}(|G|-2)$ has a hamiltonian cycle. This result was later extended by Zhang [11].

Theorem 11 (Zhang [11]) A k-connected claw-free graph G with $\sigma_{k+1}(G) \geq$ $|G|-k$ has a hamiltonian cycle.

Interpreting a hamiltonian cycle as a "spanning tree with one leaf" and comparing Theorems 3 and 11, we may make the following conjecture.

Conjecture 12 For integers k and m with $k \geq 2$ and $m \leq \min \{6, k-1\}$, every m-connected claw-free graph G with $\sigma_{k+1}(G) \geq|G|-k$ has a spanning tree with at most $k-m+1$ leaves.

The assumption $m \leq 6$ in the above conjecture looks strange, but it comes from the following theorem by Ryjáček [7].

Theorem 13 (Ryjáček [7]) Every 7-connected claw-free graph is hamiltonian.

By the above theorem, a 7-connected claw-free graph has a spanning tree with two leaves without any degree sum condition.

References

[1] H. Broersma and H. Tuinstra, Independence trees and Hamilton cycles, J. Graph Theory 29 (1998), 227-237.
[2] Y. Egawa, H. Matsuda, T. Yamashita and K. Yoshimoto, On a spanning tree with specified leaves, Graphs Combin. 24 (2008), 13-18.
[3] H. Enomoto, Long paths and large cycles in finite graphs, J. Graph Theory 8 (1984), 287-301.
[4] H. A. Jung, On maximal circuits in finite graphs, Ann. Discrete Math. 3 (1978), 129-144.
[5] M. M. Matthews and D. P. Sumner, Longest paths and cycles in $K_{1,3^{-}}$ free graphs. J. Graph Theory 9 (1985), 269-277.
[6] C. Nara, On sufficient conditions for a graph to be hamiltonian, Natur. Sci. Rep. Ochanomizu Univ. 31 (1980), 75-80.
[7] Z. Ryjáček, On a closure concept in claw-free graphs, J. Combin. Theory Ser. B 70 (1997), 217-224.
[8] M. Tsugaki and T. Yamashita, Spanning trees with few leaves, Graphs Combin. 23 (2007), 585-598.
[9] D.B. West, Introduction to Graph Theory, Second Edition, PrenticeHall, Inc. 1996.
[10] S. Win, On a conjecture of Las Vergnas concerning certain spanning trees in graphs, Resultane Math. 2 (1979), 215-224.
[11] C.Q. Zhang, Hamilton cycles in claw-free graphs, J. Graph Theory 12 (1988), 209-216.

[^0]: *This paper was written while the second author is on a Matsumae International Foundation research fellowship at the Department of Computer and Information Sciences, Ibaraki University. Hospitality and financial support are gratefully acknowledged.

