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Abstract

For a graph H and an integer k ≥ 2, let σk(H) denote the mini-

mum degree sum of k independent vertices of H . We prove that if a

connected claw-free graph G satisfies σk+1(G) ≥ |G| − k, then G has

a spanning tree with at most k leaves. We also show that the bound

|G| − k is sharp and discuss the maximum degree of the required

spanning trees.
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1 Introduction

Let G be a graph with vertex set V (G) and edge set E(G). In this paper, we

consider only simple graphs, which have neither loops nor multiple edges.

We write |G| for the order of G, that is, |G| = |V (G)|. For a vertex v of

G, we denote by degG(v) the degree of v in G. A vertex of degree one is

called an end-vertex, and an end-vertex of a tree is usually called a leaf. A

vertex set S of G is called independent if no two vertices of S are adjacent

in G. The minimum degree sum of k independent vertices of G is denoted

by σk(G), that is, if G has k independent vertices, let

σk(G) = min
S

{

∑

x∈S

degG(x) : S is an independent set of G with k vertices
}

.

If G does not have k independent vertices, we define σk(G) = +∞. The

connectivity, the independence number and the minimum degree of G are

denoted by κ(G), α(G) and δ(G), respectively. The complete graph of

order n is denoted by Kn. The complete bipartite graph with bipartition

(X, Y ), where |X | = m and |Y | = n, is denote by Km,n. A graph G is said

to be claw-free if it contains no K1,3 as an induced subgraph.

By Dirac’s Theorem, every graph G of order at least three with δ(G) ≥
1
2 |G| has a hamiltonian cycle. As an immediate corollary, we can prove

that every graph G with δ(G) ≥ 1
2 (|G| − 1) has a hamiltonian path. For

general graphs, the bound 1
2 (|G| − 1) is sharp. For example, for a positive

integer m, the complete bipartite graph G = Km,m+2 satisfies δ(G) =
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m = 1
2 (|G| − 2), but G has no hamiltonian path. However, Matthews and

Sumner [5] proved that if we restrict ourselves to the class of claw-free

graphs, a considerably smaller bound on minimum degree guarantees the

existence of a hamiltonian path.

Theorem 1 (Matthews and Sumner [5]) Let G be a connected claw-

free graph. If δ(G) ≥
(

|G| − 2
)

/3, then G has a hamiltonian path.

Ore’s Theorem states that every graph of order at least three with

σ2(G) ≥ |G| has a hamiltonian cycle. It extends Dirac’s Theorem, and

implies as a corollary that every graph G with σ2(G) ≥ |G| − 1 has a

hamiltonian path.

A path of order at least two can be interpreted as a tree having exactly

two leaves. From this point of view, a hamiltonian path of a graph of order

at least two is a spanning tree with exactly two leaves. This interpreta-

tion may lead us to consider a spanning tree with a bounded number of

leaves. Actually, Broersma and Tuinstra [1] gave a sufficient condition for

a connected graph to have such a spanning tree.

Theorem 2 (Broersma and Tuinstra [1]) Let k ≥ 2 be an integer and

let G be a connected graph of order at least two. If σ2(G) ≥ |G| − k + 1,

then G has a spanning tree with at most k leaves.

The previous corollary of Ore’s Theorem corresponds to the case k = 2

of the above theorem.

Broersma and Tuinstra also proved that the bound |G|−k+1 of σ2(G) is

sharp. However, in view of Theorem 1, for claw-free graphs, a much weaker

condition may yield the same conclusion as in Theorem 2. Motivated by

this observation, we study a degree sum condition for a claw-free graph

to have a spanning tree with a bounded number of leaves, and give the

following theorem.

Theorem 3 Let k ≥ 2 be an integer and let G be a connected claw-free

graph. If σk+1(G) ≥ |G| − k, then G has a spanning tree with at most k

leaves.

3



Note that Theorem 1 is a corollary of the case k = 2 of the above

theorem.

In the next section, we prove the above theorem. In Section 3, we

investigate the maximum degree of a spanning tree and prove that under

the same assumption as in Theorem 3, G has a spanning tree of maximum

degree at most three with at most k leaves. In Section 4, we give concluding

remarks.

Before proving Theorem 3, we first show that the bound |G| − k of

σk+1(G) is sharp. Consider a graph G constructed from one complete

graph Kk+1 and k + 1 complete graphs Km, m ≥ 2, by identifying one

vertex of each Km with one distinct vertex of Kk+1 (see Figure 1). Then

G is claw-free and satisfies σk+1(G) = |G| − k − 1, but G has no spanning

tree with at most k leaves.

Kk+1=K5

Km=K4

KmKm

Km
Km

Figure 1: A connected claw-free graph G that has no spanning tree with

at most k leaves and satisfies σk+1(G) = |G| − k − 1.

Some other results on spanning trees having at most k leaves can be

found in [2] and [8].

2 Proof of Theorem 3

We begin with some additional notation. For a vertex v of a graph G, the

neighborhood of v in G is denoted by NG(v). For a vertex set X of G,

we write NG(X) =
⋃

x∈X NG(x), and the subgraph of G induced by X is
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denoted by 〈X〉G. We write G − X for 〈V (G) − X〉G, and for a vertex v,

G − {v} is briefly denoted by G − v.

The graph constructed from two complete graphs Km and Kn by iden-

tifying one vertex of Km with one vertex of Kn is called a double complete

graph and denoted by DC(m,n), where m, n ≥ 2. The common vertex of

Km and Kn is called the center, and the other vertices are called non-central

vertices (See Figure 2). Note that the order of DC(m,n) is m + n− 1, and

the path of order three is a double complete graph DC(2, 2). Let D denote

the set of all double complete graphs.

When we consider a path or a cycle, we always assign an orientation.

Let W be a path or a cycle, and let v ∈ V (W ). Then we denote by v−(W )

and v+(W ) the predecessor and the successor of W , respectively. We write

v−−(W ) instead of
(

v−(W )
)−(W )

. For A ⊂ V (W ), let A−(W ) = {v−(W ) : v ∈

A}. If W is clear from the context, we often omit “(W )” and write v−, v+,

v−− and A− instead of v−(W ), v+(W ), v−−(W ) and A−(W ), respectively. A

path which starts at a vertex u and ends at a vertex v is called a uv-path.

For a path P and vertices u, v ∈ V (P ), a subpath of P with ends u and v

is denoted by P (u, v). For subgraphs H1 and H2 of a graph G, we define

H1+H2 by H1+H2 =
(

V (H1)∪V (H2), E(H1)∪E(H2)
)

. When we consider

this operation, an edge is often considered as a subgraph isomorphic to K2.

For example, for uv ∈ E(G), H1 + uv =
(

V (H1) ∪ {u, v}, E(H1) ∪ {uv}
)

.

For further explanation of terminologies and notation, we refer the reader

to [9].

Km=K5

Center

Kn=K4

Figure 2: The double complete graph DC(m,n), whose order is m + n− 1.

Enomoto [3], Jung [4] and Nara [6] implicitly characterized the con-

nected graphs G such that G satisfies degG(x)+degG(y) ≥ |G|−1 for every

5



pair of vertices x and y of G which are end-vertices of some hamiltonian

path of G, but G has no hamiltonian cycle. The next lemma is a corollary

of this characterization. We give its proof for the self-containedness of the

paper.

Lemma 4 Let G be a claw-free graph having a hamiltonian path. Suppose

that degG(x)+degG(y) ≥ |G|−1 for every pair of vertices x and y which are

end-vertices of some hamiltonian path. Then G has a hamiltonian cycle,

or G is a double complete graph.

Proof. Assume G has no hamiltonian cycle. Let P be a hamiltonian

path and let x and y be the first and the last vertices of P , respectively.

By the assumption, xy /∈ E(G). If NG(x)− ∩ NG(y) 6= ∅, then P (x, v) +

vy + P (y, v+) + v+x, where v ∈ NG(x)− ∩ NG(y), is a hamiltonian cycle,

a contradiction. Thus, NG(x)− ∩ NG(y) = ∅. Since NG(x)− ∪ NG(y) ⊂

V (G) − {y} and
∣

∣NG(x)− ∪ NG(y)
∣

∣ = |NG(x)−| + |NG(y)| = |NG(x)| +

|NG(y)| = degG(x) + degG(y) ≥ |G| − 1, we have NG(x)− ∪ NG(y) =

V (G) − {y} and degG(x) + degG(y) = |G| − 1. On the other hand, since

NG(x)∪NG(y) ⊂ V (G)−{x, y} and degG(x)+degG(y) ≥ |G|−1, we have

NG(x) ∩ NG(y) 6= ∅. We consider two cases.

Case 1. |NG(x) ∩ NG(y)| = 1.

In this case, NG(x) ∪ NG(y) = V (G) − {x, y}. Let NG(x) ∩ NG(y) =

{z}. Since NG(x)− ∩ NG(y) = ∅ and NG(x) ∪ NG(y) = V (G) − {x, y},

v ∈ NG(x) − {x+} implies v− ∈ NG(x). This implies P (x+, z) ⊂ NG(x).

Similarly, P (z, y−) ⊂ NG(y). Since NG(x) ∩ NG(y) = {z}, we have

NG(x) = P (x+, z) and NG(y) = P (z, y−).

Let x1 ∈ P (x+, z−). Then x+
1 ∈ NG(x) and P (x1, x) + xx+

1 + P (x+
1 , y)

is a hamiltonian path of G. If NG(x1) ∩ P (z+, y) 6= ∅, then P (x, x1) +

x1y1 +P (y1, y)+ yy−
1 +P (y−

1 , x+
1 )+x+

1 x, where y1 ∈ NG(x1)∩P (z+, y), is

a hamiltonian cycle of G, a contradiction. Therefore, NG(x1) ⊂ P (x, z) −

{x1}. Since degG(x1) + degG(y) ≥ |G| − 1 by the assumption, we have

NG(x1) ∩ NG(y) = {z}. The we can apply the same argument as in the

previous paragraph to x1 and y, and obtain NG(x1) = P (x, z)−{x1}. This
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implies that z is a cutvertex of G and P (x, z) induces a complete graph.

By symmetry, P (z, y) also induces a complete graph. Therefore, G is a

double complete graph.

Case 2. |NG(x) ∩ NG(y)| ≥ 2.

In this case, there exist x0 ∈ NG(x) and y0 ∈ NG(y) such that x0 ∈

P (y+
0 , y). Choose such x0 and y0 so that P (y0, x0) is as short as possible.

Since NG(x)− ∩ NG(y) = ∅, y+
0 6= x0.

Since xy /∈ E(G) and NG(x)− ∪ NG(y) = V (G) − {y}, x−−
0 exists and

x−−
0 ∈ NG(x)− ∪ NG(y). Since x−

0 /∈ NG(x) by the choice of (x0, y0),

x−−
0 ∈ NG(y). Again by the choice of (x0, y0), we have y0 = x−−

0 . Since

P (y+
0 , x)+xx0+P (x0, y) and P (y+

0 , y)+yy0+P (y0, x) are both hamiltonian

paths, we can apply the same argument as that for P to these paths, and

obtain degG(y+
0 )+degG(y) = degG(y+

0 )+degG(x) = degG(y)+degG(x) =

|G| − 1, which yields degG(x) = degG(y) = degG(y+
0 ) = 1

2 (|G| − 1).

Let C = P (x, y0) + y0y + P (y, x0) + x0x. Then V (C) = V (G) − {y+
0 }.

Let C = v0v1 . . . v|G|−2v0. If y+
0 is adjacent to a consecutive vertices of

C, then we can insert y+
0 to this cycle to obtain a hamiltonian cycle of G,

contradicting the assumption. Since degG(y+
0 ) = 1

2

(

|G|−1
)

, y+
0 is adjacent

to every other vertex of C. Let vi ∈ NG(y+
0 ). Then vi−2 ∈ NG(y+

0 ). Since

{vi−1, vi+1, y
+
0 } ⊂ NG(vi) and G is claw-free, we have vi−1vi+1 ∈ E(G).

Then by replacing vi−2vi−1vivi+1 in C with vi−2y
+
0 vivi−1vi+1, we have a

hamiltonian cycle of G. This is a contradiction, and the lemma follows. 2

Win [10] introduced a k-ended system to prove the existence of a span-

ning tree with at most k leaves. In this paper, we modify the definition of

a k-ended system and define a k-extended system. It plays an important

role in the proof of our main theorem.

Let G be a connected claw-free graph, and F be a subgraph of G. The

set of components of F is denoted by C(F ). We call F an extended system if

each component of F is a path, a cycle or a double complete graph. For an

extended system F , we define a mapping f from C(F ) to {1, 2} as follows.
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For every C ∈ C(F ),

f(C) =







1 if C is K1, K2, a cycle or a double complete graph,

2 otherwise (i.e., a path of order at least four),

and define

f(F ) =
∑

C∈C(F )

f(C).

Let Ci(F ) = {C ∈ C(F ) : f(C) = i} for i = 1, 2. An extended system F is

called a k-extended system if f(F ) ≤ k.

The following lemma is an easy but important observation.

Lemma 5 Let G be a claw-free graph and D be an induced double complete

subgraph of G. If a vertex v ∈ V (G) − V (D) is adjacent to the center of

D, then v is also adjacent to a non-central vertex of D.

Proof. Let D1 and D2 be the two blocks of D. Then both D1 and D2

are complete graphs. Let x be the center of D and let xi ∈ Di − {x}

(i = 1, 2). Since D is an induced subgraph of G, x1x2 /∈ E(G). Since

{x1, x2, v} ⊂ NG(x) and G is claw-free, {x1v, x2v} ∩ E(G) 6= ∅. �

The next lemma shows a relationship between a k-extended system and

a spanning tree with at most k leaves in a claw-free graph.

Lemma 6 Let k ≥ 2 be an integer and G be a connected claw-free graph.

If G has a spanning extended system F0, then G has a spanning tree with

at most f(F0) leaves. In particular, if G has a spanning k-extended system,

then G has a spanning tree with at most k leaves.

Proof. Take a spanning extended system F with f(F ) ≤ f(F0) so that

the number of double complete graphs is as small as possible. Then every

double complete graph of F is an induced subgraph of G since if two non-

central vertices of a double complete graph D of F are joined by an edge e

of G, then D + e has a hamiltonian cycle, and so D should be replaced by

this hamiltonian cycle.
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Since G is connected, there exists a minimal set X of edges such that

F together with X forms a connected spanning subgraph of G. We shall

construct a spanning tree with at most k leaves consisting of F and X . By

Lemma 5, we may assume that no edge in X is incident with the center

of a double complete graph. For any double complete graph D of F , there

exists an edge eD ∈ X incident with a vertex vD of D, where vD is not

the center of D. Then D has a hamiltonian path starting at vD, and we

replace D with this hamiltonian path.

For any cycle C of F , there exists an edge eC ∈ X incident with a vertex

vC of C. Delete an edge of C incident with vC . By repeating the above

procedure for every double complete graph and every cycle of F , we obtain

a spanning tree T . By the construction, for each C ∈ C(F ), the number of

leaves of T contained in C is at most f(C).

Hence T has at most f(F ) ≤ f(F0) leaves. �

We call a k-extended system F of G a maximal k-extended system if G

has no k-extended system F ′ such that V (F ) is a proper subset of V (F ′).

In order to prove our theorem, we need the following lemma.

Lemma 7 Suppose that a graph G does not have a spanning k-extended

system. Let F be a maximal (k + 1)-extended system of G. Then G does

not have a k-extended system F ′ with V (F ′) = V (F ). In particular, F is

not a k-extended system, and so f(F ) = k + 1.

Proof. Let F be a maximal (k + 1)-extended system of G. Assume that

G has a k-extended system F ′ with V (F ′) = V (F ). Since G does not have

a spanning k-extended system, there exists a vertex v ∈ V (G) − V (F ′),

and thus G has a (k + 1)-extended system F ′ ∪ {v}, which contradicts the

maximality of F . 2

By Lemma 6, in order to prove our Theorem 3, it suffices to prove the

following theorem.

Theorem 8 Let k ≥ 2 be an integer and G be a claw-free graph. If

σk+1(G) ≥ |G| − k, then G has a spanning k-extended system.
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Proof. Suppose that G has no spanning k-extended system. Take a max-

imal (k + 1)-extended system F so that

(F1)
∑

P∈C2(F ) |P | is as large as possible,

(F2) The number of cycles in C1(F ) is as large as possible subject to (F1),

and

(F3)
∑

P∈C2(F )

(

deg〈V (P )〉G
(xP ) + deg〈V (P )〉G

(yP )
)

is as small as possible,

subject to (F1) and (F2), where xP and yP are the end-vertices of P .

By Lemma 7, f(F ) = k + 1. We begin with a simple but important

observation.

Claim 1 For each D ∈ C1(F ) and for each v ∈ V (D) that is not the center

of D if D is a double complete graph, D has a hamiltonian path containing

v as one of its end-vertices.

The next claim follows from the condition (F2) and the same argument

as in the first paragraph of the proof of Lemma 6.

Claim 2 Every double complete graph D of F is an induced subgraph of

G.

Next, we investigate the adjacency between the components of F .

Claim 3 The following three statements hold.

(i) No two components of C1(F ) are connected by an edge of G.

(ii) No end-vertex of a path in C2(F ) is connected to a component of C1(F )

by an edge of G.

(iii) No two end-vertices of two distinct paths or of the same path in C2(F )

are joined by an edge of G

Proof. (i) Assume that two components Q1 and Q2 of C1(F ) are joined by

an edge e of G. By Lemma 5, we may assume that no end-vertex of e is the

center of a double complete graph. So Q1 + e + Q2 contains a hamiltonian

path P0. By replacing Q1 and Q2 of F by P0, we obtain another maximal
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(k + 1)-extended system F ′ on V (F ). If |P0| ≥ 4 this contradicts the

condition (F1). If |P0| ≤ 3, then f(P0) = 1 and hence F ′ is a k-extended

system, which contradicts Lemma 7.

(ii) If an end-vertex of a path P ∈ C2(F ) is joined to a component Q ∈

C1(F ) by an edge e of G, then by an argument similar to the one in (i),

we see that P + e + Q has a hamiltonian path. Thus, we can derive a

contradiction by Lemma 7.

(iii) If two end-vertices of two paths or of the same path in C2(F ) are joined

by an edge of G, then we can obtain a k-extended system with vertex set

V (F ), which contradicts Lemma 7. 2

For every component Q ∈ C1(F ), we take one vertex xQ from Q so

that xQ is a non-central vertex of Q if Q is a double complete graph. For

every path P ∈ C2(F ), let xP and yP be the two end-vertices of P . Define

End(F ) by

End(F ) =
⋃

Q∈C1(F )

{xQ} ∪
⋃

P∈C2(F )

{xP , yP }.

Then |End(F )| = f(F ) = k + 1 by Lemma 7. Claim 3 and Lemma 5 yield

the next two claims.

Claim 4 End(F ) is an independent set of G.

Claim 5 For every component Q ∈ C1(F ) of F and the vertex {xQ} =

End(F ) ∩ V (Q), it follows that

∑

x∈End(F )

∣

∣NG(x) ∩ V (Q)
∣

∣ =
∣

∣NG(xQ) ∩ V (Q)
∣

∣ ≤ |Q| − 1 = |Q| − f(Q).

Now we measure the neighborhood of End(F ) in a path of C2(F ).

Claim 6 Let P be a path in C2(F ). Then for each distinct pair of vertices

z, w in End(F ) − {xP , yP }, the following statements hold.

(i) NG(z) ∩ NG(w) ∩ V (P ) = ∅.

(ii) NG(xP )− ∩ NG(yP ) ∩ V (P ) = ∅.

(iii) NG(z)− ∩ NG(yP ) ∩ V (P ) = ∅ and NG(z)+ ∩ NG(xP ) ∩ V (P ) = ∅.

(iv) NG(z) ∩ NG(xP ) ∩ V (P ) = ∅.
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Proof. Let Q and R be the components of F containing z and w, respec-

tively.

(i) Suppose NG(z) ∩ NG(w) ∩ V (P ) 6= ∅ and take a vertex v ∈ NG(z) ∩

NG(w) ∩ V (P ). Then v 6= xP , yP by Claim 4. Since {z, w, v−} ⊂ NG(v)

and G is claw-free, zv− ∈ E(G) or wv− ∈ E(G). By symmetry, we may

assume that zv− ∈ E(G). If Q 6= R, then replace P , Q, R of F by two

hamiltonian paths Q′ and R′ in P (xP , v−)+v−z+Q and P (yP , v)+vw+R,

respectively. Then we obtain a new (k + 1)-extended system F ′ on V (F ).

If f(Q′) + f(R′) < f(P ) + f(Q) + f(R), then F ′ is a k-extended system,

which contradicts Lemma 7. Thus, f(Q′) + f(R′) ≥ f(P ) + f(Q) + f(R).

This is possible only if {Q′, R′} ⊂ C2(F
′) and {Q, R} ⊂ C1(F ). However,

this contradicts the condition (F1). If Q = R, then Q is a path whose

end-vertices are z and w and P (xP , v−) + v−z + Q + wv + P (v, yP ) is a

hamiltonian path of 〈V (P )∪ V (Q)〉G, and by replacing P and Q with this

path, we have a k-extended system on V (F ), contradicting Lemma 7.

(ii) If NG(xP )− ∩ NG(yP ) ∩ V (P ) 6= ∅, then 〈V (P )〉G has a hamiltonian

cycle, and so G has a k-extended system with vertex set V (F ), which

contradicts Lemma 7.

(iii) By symmetry, it suffices to show that NG(z)− ∩ NG(yP ) ∩ V (P ) = ∅.

Assume that there exists a vertex v ∈ NG(z)− ∩ NG(yP ) ∩ V (P ). Then

P (xP , v) + vyP + P (yP , v+) + v+z + Q has a hamiltonian path of 〈V (P ) ∪

V (Q)〉G, and so by replacing P and Q of F with this path, we have a

k-extended system on V (F ). This contradicts Lemma 7.

(iv) Suppose that there exists a vertex v in NG(z)∩NG(xP )∩V (P ). Then

v 6= yP by Claim 4. Since {v+, xp, z} ⊂ NG(v) and G is claw-free, we have

v+z ∈ E(G) by (iii) and Claim 4. Suppose that Q is a path of order at

least four. If v 6= x+
P , then replace P and Q by the cycle P (xP , v) + vxP

and a hamiltonian path of P (yP , v+) + v+z + Q. If v = x+
P , replace P and

Q with xP v and a hamiltonian path of P (yP , v+)+v+z+Q. In either case,

G has a k-extended system on V (F ), which contradicts Lemma 7.

Next suppose that Q is a cycle. Let us denote the two vertices of

Q adjacent to z by z− and z+. Then since {v, z−, z+} ⊂ NG(z) and
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G is claw-free, we may assume that z−v ∈ E(G) or z−z+ ∈ E(G) by

symmetry. If z−v ∈ E(G), then P (xP , v)+ vz− +Q+ zv+ +P (v+, yP ) has

a hamiltonian path, and by replacing P and Q with this path, we again have

a k-extended system on V (F ), a contradiction. Therefore we may assume

that z−z+ ∈ E(G). If the order of Q is at least four, replace P and Q with

the path P ′ = P (xP , v)+vz+zv+ +P (v+, yP ) and the cycle Q−z+z−z+.

If the order of Q is three, replace P and Q with the path P ′ and z−z+.

Then in either case, we obtain a maximal (k + 1)-extended system with
∑

P∈C2(F ′) |P | >
∑

P∈C2(F ) |P |. This contradicts the condition (F1).

We finally consider the case that Q is K1, K2 or a double complete

graph. In this case, consider Q − z and the path P ′ = P (xP , v) + vz +

zv+ + P (v+, yP ). Note that Q − z is empty, K1, K2, a double complete

graph or a complete graph of order at least three. In the last case, Q − z

has a hamiltonian cycle. Therefore, by replacing P and Q with P ′ and a

certain subgraph of Q − z, we obtain a maximal (k + 1)-extended system

F ′ with
∑

P∈C2(F ′) |P | >
∑

P∈C2(F ) |P |. This contradicts the choice (F1)

of F . �

Claim 7 For each P ∈ C2(F ),

∑

x∈End(F )

∣

∣NG(x) ∩ V (P )
∣

∣ ≤ |P | − f(P ).

Proof. First assume that NG(z) ∩ V (P ) = ∅ for every z ∈ End(F ) −

{xP , yP }. Let H = 〈V (P )〉G. By the condition (F3), for each hamiltonian

path P ∗ of H ,

∑

Q∈C2(F )−{P}

(

deg〈V (Q)〉G
(xQ)+deg〈V (Q)〉G

(yQ)
)

+degH(xP∗)+degH(yP∗)

≥
∑

Q∈C2(F )

(

deg〈Q〉G
(xQ) + deg〈Q〉G

(yQ)
)

,

which implies degH(xP∗) + degH(yP∗) ≥ degH(xP ) + degH(yP ). Thus,

if degH(xP ) + degH(yP ) ≥ |H | − 1, then by Lemma 4, either H has a

hamiltonian cycle or H is a double complete graph. Then whichever occurs,
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we can replace P with an appropriate subgraph of H to obtain a k-extended

system on V (F ), which contradicts Lemma 7. Therefore,

∑

x∈End(F )

∣

∣NG(x) ∩ V (P )
∣

∣ =
∣

∣NG(xP ) ∩ V (P )
∣

∣ +
∣

∣NG(yP ) ∩ V (P )
∣

∣

= degH(xP ) + degH(yP ) ≤ |H | − 2 = |P | − f(P ).

Next we assume that NG(z1)∩V (P ) 6= ∅ for some vertex z1 ∈ End(F )−

{xP , yP }. Let v ∈ NG(z1) ∩ V (P ), P1 = P (xP , v−) and P2 = P (v+, yP ).

Then |P | = |P1| + |P2| + 1. By Claim 6 (i)–(iv),
(

NG(xP ) ∩ V (P1)
)−

,

NG(yP ) ∩ V (P1) and

(

(

NG(z) ∩ V (P1)
)−

)

z∈End(F )−{xP ,yP }

are well-defined and these k + 1 sets are pairwise disjoint. Moreover, they

do not contain v− by Claim 6 (iii). Thus

∑

z∈End(F )

∣

∣NG(z) ∩ V (P1)
∣

∣ ≤ |P1| − 1.

By symmetry of P1 and P2, we obtain
∑

z∈End(F )

∣

∣NG(z)∩V (P2)
∣

∣ ≤ |P2|−1.

By Claim 6 (i) and (iv), v is not adjacent to any vertex in End(F ) − {z1},

and so
∑

z∈End(F ) |NG(z)∩{v}| = 1. By summing these three inequalities,

we have
∑

z∈End(F )

∣

∣NG(z) ∩ V (P )
∣

∣ =
∑

z∈End(F )

∣

∣NG(z) ∩ V (P1)
∣

∣ +
∑

z∈End(F )

∣

∣NG(z) ∩ V (P2)
∣

∣

+
∑

z∈End(F )

∣

∣NG(z) ∩ {v}
∣

∣

≤ |P1| − 1 + |P2| − 1 + 1

= |P | − 2 = |P | − f(P ). �

We now prove Theorem 8. Assume that NG(z) ∩ NG(w) − V (F ) 6= ∅

for some z, w ∈ End(F ) with z 6= w. Let P and Q be the components of

F that contain z and w, respectively (possibly P=Q). Let a ∈ NG(z) ∩

NG(w) − V (F ). If P 6= Q, then since P and Q have hamiltonian paths

which contain z and w as an end-vertex, respectively, P + za + aw + Q

contains a hamiltonian path. By replacing P and Q with this path, we

14



obtain a new (k + 1)-extended system F ′ with V (F ′) = V (F ) ∪ {a}. This

contradicts the maximality of F . If P = Q, then we may assume z = xP0

and w = yP0
for some P0. Then by replacing P with a cycle P + az + zw,

we again obtain a (k + 1)-extended system F ′ with V (F ′) = V (F ) ∪ {a},

a contradiction. Therefore, we have NG(z) ∩ NG(w) − V (F ) = ∅ for each

distinct pair of vertices z and w in End(F ). Hence

∑

z∈End(F )

∣

∣NG(z) ∩
(

V (G) − V (F )
)
∣

∣ ≤
∣

∣V (G) − V (F )
∣

∣ = |G| − |F |.

Then by Claims 5 and 7, we obtain

∑

z∈End(F )

degG(z) =
∑

C∈C(F )

∑

z∈End(F )

∣

∣NG(z) ∩ V (C)
∣

∣

+
∑

z∈End(F )

∣

∣NG(z) ∩
(

V (G) − V (F )
)∣

∣

≤
∑

C∈C(F )

(

|C| − f(C)
)

+ |G| − |F |

= |F | − f(F ) + |G| − |F |

= |G| − k − 1.

This contradicts the condition σk+1(G) ≥ |G| − k, and Theorem 8 follows.

�

3 Maximum Degree

A tree of maximum degree at most k is called a k-tree. Under the same

assumption as that of Theorem 3, we can actually guarantee the existence

of a 3-tree with at most k leaves.

Theorem 9 Let k ≥ 2 be an integer and let G be a connected claw-free

graph. If σk+1(G) ≥ |G| − k, then G has a spanning 3-tree with at most k

leaves.

In order to prove the above theorem, it suffices to prove the following

lemma.
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Lemma 10 Let k ≥ 2 be an integer. If a connected claw-free graph G has

a spanning tree with at most k leaves, then G has a spanning 3-tree with at

most k leaves.

Proof. Let u be an arbitrary vertex in G, and consider every spanning

tree as a rooted tree with root u. Choose a spanning tree T with at most k

leaves so that
∑

x∈V (T ) distT (u, x) is as large as possible, where distT (x, y)

is the distence in T between two vertices x and y. Assume T has a vertex

w of degree at least four. Then w has at least three children, and since G is

claw-free, w has a pair of children v1 and v2 which are adjacent with each

other in G. Let T ′ = T −wv1 + v1v2. Then T ′ is a spanning tree of G, and

degT ′(w) = degT (w)−1, degT ′(v2) = degT (v2)+1 and degT ′(x) = degT (x)

for each x ∈ V (G)−{w, v2}. Since degT (w) ≥ 4, T ′ does not have the larger

number of leaves than T .

Let x ∈ V (G). Then T has a unique ux-path P . If P still exists in

T ′, we have distT (u, x) = distT ′(u, x). If P does not exist in T ′, then

wv1 ∈ E(P ) and P ′ = P (u, w) + wv2 + v2v1 + P (v1, x) is a unique ux-path

in T ′. This implies distT ′(u, x) = distT (u, x) + 1. Therefore, distT ′(u, x) ≥

distT (u, x) for each x ∈ V (G) and distT ′(u, v) > distT (u, v). These imply
∑

x∈V (G) distT ′(u, x) >
∑

x∈V (G) distT (u, x). This contradicts the choice

of T , and hence we have ∆(T ) ≤ 3 �

4 Concluding Remarks

Matthews and Sumner [5] proved that a 2-connected claw-free graph of

minimum degree at least 1
3

(

|G| − 2
)

has a hamiltonian cycle. This result

was later extended by Zhang [11].

Theorem 11 (Zhang [11]) A k-connected claw-free graph G with σk+1(G) ≥

|G| − k has a hamiltonian cycle.

Interpreting a hamiltonian cycle as a “spanning tree with one leaf” and

comparing Theorems 3 and 11, we may make the following conjecture.
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Conjecture 12 For integers k and m with k ≥ 2 and m ≤ min{6, k − 1},

every m-connected claw-free graph G with σk+1(G) ≥ |G|−k has a spanning

tree with at most k − m + 1 leaves.

The assumption m ≤ 6 in the above conjecture looks strange, but it

comes from the following theorem by Ryjáček [7].

Theorem 13 (Ryjáček [7]) Every 7-connected claw-free graph is hamil-

tonian.

By the above theorem, a 7-connected claw-free graph has a spanning

tree with two leaves without any degree sum condition.
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