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Abstract

For a graph H and an integer k > 2, let o (H) denote the mini-
mum degree sum of k£ independent vertices of H. We prove that if a
connected claw-free graph G satisfies o,11(G) > |G| — k, then G has
a spanning tree with at most k leaves. We also show that the bound
|G| — k is sharp and discuss the maximum degree of the required

spanning trees.
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1 Introduction

Let G be a graph with vertex set V(G) and edge set E(G). In this paper, we
consider only simple graphs, which have neither loops nor multiple edges.
We write |G| for the order of G, that is, |G| = |V(G)|. For a vertex v of
G, we denote by degq(v) the degree of v in G. A vertex of degree one is
called an end-verter, and an end-vertex of a tree is usually called a leaf. A
vertex set S of GG is called independent if no two vertices of S are adjacent
in G. The minimum degree sum of k£ independent vertices of G is denoted
by o (G), that is, if G has k independent vertices, let

or(G) = mgn{ Z degq(z) : S is an independent set of G with k Vertices}.
zeS

If G does not have k independent vertices, we define o (G) = 4+00. The
connectivity, the independence number and the minimum degree of G are
denoted by k(G), a(G) and §(G), respectively. The complete graph of
order n is denoted by K,. The complete bipartite graph with bipartition
(X,Y), where | X| = m and |Y| = n, is denote by K,, . A graph G is said
to be claw-free if it contains no K 3 as an induced subgraph.

By Dirac’s Theorem, every graph G of order at least three with 6(G) >
%|G | has a hamiltonian cycle. As an immediate corollary, we can prove
that every graph G with §(G) > 3(|G| — 1) has a hamiltonian path. For
general graphs, the bound %(|G | — 1) is sharp. For example, for a positive

integer m, the complete bipartite graph G = K, ;2 satisfies 0(G) =



m = 1(|G| — 2), but G has no hamiltonian path. However, Matthews and
Sumner [5] proved that if we restrict ourselves to the class of claw-free
graphs, a considerably smaller bound on minimum degree guarantees the

existence of a hamiltonian path.

Theorem 1 (Matthews and Sumner [5]) Let G be a connected claw-
free graph. If §(G) > (|G| — 2) /3, then G has a hamiltonian path.

Ore’s Theorem states that every graph of order at least three with
02(G) > |G| has a hamiltonian cycle. It extends Dirac’s Theorem, and
implies as a corollary that every graph G with 02(G) > |G| — 1 has a
hamiltonian path.

A path of order at least two can be interpreted as a tree having exactly
two leaves. From this point of view, a hamiltonian path of a graph of order
at least two is a spanning tree with exactly two leaves. This interpreta-
tion may lead us to consider a spanning tree with a bounded number of
leaves. Actually, Broersma and Tuinstra [1] gave a sufficient condition for

a connected graph to have such a spanning tree.

Theorem 2 (Broersma and Tuinstra [1]) Let k > 2 be an integer and
let G be a connected graph of order at least two. If o2(G) > |G| — k + 1,

then G has a spanning tree with at most k leaves.

The previous corollary of Ore’s Theorem corresponds to the case k = 2
of the above theorem.

Broersma and Tuinstra also proved that the bound |G|—k+1 of 02(G) is
sharp. However, in view of Theorem 1, for claw-free graphs, a much weaker
condition may yield the same conclusion as in Theorem 2. Motivated by
this observation, we study a degree sum condition for a claw-free graph
to have a spanning tree with a bounded number of leaves, and give the

following theorem.

Theorem 3 Let k > 2 be an integer and let G be a connected claw-free
graph. If o,11(G) > |G| — k, then G has a spanning tree with at most k

leaves.



Note that Theorem 1 is a corollary of the case £ = 2 of the above
theorem.

In the next section, we prove the above theorem. In Section 3, we
investigate the maximum degree of a spanning tree and prove that under
the same assumption as in Theorem 3, G has a spanning tree of maximum
degree at most three with at most k leaves. In Section 4, we give concluding
remarks.

Before proving Theorem 3, we first show that the bound |G| — k of
0k+1(G) is sharp. Consider a graph G constructed from one complete
graph K41 and k + 1 complete graphs K,,, m > 2, by identifying one
vertex of each K, with one distinct vertex of Kj11 (see Figure 1). Then
G is claw-free and satisfies 011(G) = |G| — k — 1, but G has no spanning

tree with at most k£ leaves.

Figure 1: A connected claw-free graph G that has no spanning tree with

at most k leaves and satisfies 044+1(G) = |G| — k — 1.

Some other results on spanning trees having at most k leaves can be
found in [2] and [8].

2 Proof of Theorem 3

We begin with some additional notation. For a vertex v of a graph G, the
neighborhood of v in G is denoted by Ng(v). For a vertex set X of G,

we write Ng(X) = J,cx Na(z), and the subgraph of G induced by X is



denoted by (X)g. We write G — X for (V(G) — X)¢, and for a vertex v,
G — {v} is briefly denoted by G — v.

The graph constructed from two complete graphs K,, and K, by iden-
tifying one vertex of K, with one vertex of K, is called a double complete
graph and denoted by DC(m,n), where m,n > 2. The common vertex of
K., and K, is called the center, and the other vertices are called non-central
vertices (See Figure 2). Note that the order of DC(m,n) is m+mn—1, and
the path of order three is a double complete graph DC(2,2). Let D denote
the set of all double complete graphs.

When we consider a path or a cycle, we always assign an orientation.
Let W be a path or a cycle, and let v € V(W). Then we denote by v~ ()
and vT(W) the predecessor and the successor of W, respectively. We write
v~=~ (W) instead of (’U_(W))_(W). For A C V(W),let A=W) = {4=(W). o ¢
A}. If W is clear from the context, we often omit “(W)” and write v—, v,
v~ and A~ instead of v~ W) TWV) ==W) and A=W) respectively. A
path which starts at a vertex u and ends at a vertex v is called a uv-path.
For a path P and vertices u,v € V(P), a subpath of P with ends u and v
is denoted by P(u,v). For subgraphs H; and Hs of a graph G, we define
Hi+H, by Hi+Hs = (V(H,)UV (Hz), E(H)UE(H>)). When we consider
this operation, an edge is often considered as a subgraph isomorphic to Ks.
For example, for wv € E(G), Hy +uv = (V(H1) U {u,v}, E(Hy) U {w}).
For further explanation of terminologies and notation, we refer the reader
to [9].

Center

K,,=Ks K, =Ky

Figure 2: The double complete graph DC(m,n), whose order is m +mn — 1.

Enomoto [3], Jung [4] and Nara [6] implicitly characterized the con-
nected graphs G such that G satisfies deg(x)+degs(y) > |G| —1 for every



pair of vertices  and y of G which are end-vertices of some hamiltonian
path of G, but G has no hamiltonian cycle. The next lemma is a corollary

of this characterization. We give its proof for the self-containedness of the

paper.

Lemma 4 Let G be a claw-free graph having a hamiltonian path. Suppose
that degq(z)+dega(y) > |G| —1 for every pair of vertices x and y which are
end-vertices of some hamiltonian path. Then G has a hamiltonian cycle,

or G is a double complete graph.

Proof. Assume G has no hamiltonian cycle. Let P be a hamiltonian
path and let z and y be the first and the last vertices of P, respectively.
By the assumption, zy ¢ E(G). If Ng(x)™ N Ng(y) # 0, then P(x,v) +
vy + P(y,v") + vz, where v € Ng(z)™ N Ng(y), is a hamiltonian cycle,
a contradiction. Thus, Ng(z)™ N Ng(y) = 0. Since Ng(x)~ U Ng(y) C
V(G) — {y} and [Na()™ U Na(y)| = INa(x)"| + INa(y)| = INa(x)| +
INa(y)| = dega(x) + dege(y) > |G| — 1, we have Ng(z)~ U Ng(y) =
V(G) — {y} and deg,(z) + deg,(y) = |G| — 1. On the other hand, since
Ng(z)UNg(y) C V(G) —{z,y} and degq(z) +degs(y) > |G| — 1, we have
Ng(x) N Ng(y) # 0. We consider two cases.

Case 1. |[Ng(z) N Ng(y)| = 1.

In this case, Ng(z) U Ng(y) = V(G) — {z,y}. Let Ng(z) N Na(y) =
{z}. Since Ng(z)~ N Ng(y) = 0 and Ng(z) U Ng(y) = V(G) — {z,y},
v € Ng(z) — {zT} implies v~ € Ng(z). This implies P(z*,z) C Ng(x).
Similarly, P(z,y~) C Ng(y). Since Ng(z) N Ng(y) = {z}, we have
Ng(z) = P(xt,z) and Ng(y) = P(z,y7).

Let #1 € P(xT,27). Then 2] € Ng(z) and P(z1,7) + 2z + P(27,y)
is a hamiltonian path of G. If Ng(z1) N P(z",y) # 0, then P(z,z1) +
z1y1+ P(y1,y) +yyy +Pyp, ) +af @, where y1 € No(z1) N P(2T,y), is
a hamiltonian cycle of G, a contradiction. Therefore, Ng(x1) C P(z,2) —
{z1}. Since degq(z1) + degn(y) > |G| — 1 by the assumption, we have
Ng(z1) N Ng(y) = {z}. The we can apply the same argument as in the
previous paragraph to 1 and y, and obtain Ng(z1) = P(z,z) — {x1}. This



implies that z is a cutvertex of G and P(z,z) induces a complete graph.
By symmetry, P(z,y) also induces a complete graph. Therefore, G is a
double complete graph.

Case 2. |Ng(z) N Ng(y)| > 2.

In this case, there exist g € Ng(x) and yo € Ng(y) such that zp €
P(yg,y). Choose such xg and yo so that P(yo,xo) is as short as possible.
Since Ng ()™ N Na(y) =0, yd # xo.

Since zy ¢ E(G) and Ng(x)~ U Ng(y) = V(G) —{y}, x; ~ exists and
g € Ng(x)” U Ng(y). Since z; ¢ Ng(z) by the choice of (xo,yo),
xy € Ng(y). Again by the choice of (zg,y0), we have yo = x, . Since
P(yd, ) +azo+P(20,y) and P(yd , y)+yyo+P(yo, z) are both hamiltonian
paths, we can apply the same argument as that for P to these paths, and
obtain degg(yg ) +degg (y) = degg(yg ) + degg(x) = degg (y) +degg(z) =
|G| — 1, which yields degg () = degg(y) = dega(yy ) = 3(/G| — 1)

Let C = P(z,y0) + Yoy + P(y, o) + xox. Then V(C) = V(G) — {yj }.
Let C' = vov1...vg|—2vo. If yar is adjacent to a consecutive vertices of
C, then we can insert y4 to this cycle to obtain a hamiltonian cycle of G,
contradicting the assumption. Since degq (yg) = s (1G] -1), yg is adjacent
to every other vertex of C. Let v; € Ng (yS’) Then v;_5 € Ng(yg'). Since
{vi,l,viﬂ,yar} C Ng(vi) and G is claw-free, we have v;_1v;41 € E(G).
Then by replacing v;_ov;_1v;v;41 in C' with Ui_ngUiUi_l’Ui_Arl, we have a

hamiltonian cycle of G. This is a contradiction, and the lemma follows. O

Win [10] introduced a k-ended system to prove the existence of a span-
ning tree with at most k leaves. In this paper, we modify the definition of
a k-ended system and define a k-extended system. It plays an important
role in the proof of our main theorem.

Let G be a connected claw-free graph, and F' be a subgraph of G. The
set of components of F' is denoted by C(F'). We call F an extended system if
each component of F' is a path, a cycle or a double complete graph. For an

extended system F', we define a mapping f from C(F) to {1, 2} as follows.



For every C € C(F),

() 1 if C'is Ky, Ko, a cycle or a double complete graph,

2 otherwise (i.e., a path of order at least four),

and define
fE)=Y fo)
Cee(F)
Let Ci(F) ={C € C(F) : f(C) =i} for i = 1,2. An extended system F is
called a k-extended system if f(F) < k.

The following lemma is an easy but important observation.

Lemma 5 Let G be a claw-free graph and D be an induced double complete
subgraph of G. If a vertex v € V(G) — V(D) is adjacent to the center of

D, then v is also adjacent to a non-central verter of D.

Proof. Let D1 and D5 be the two blocks of D. Then both D; and D,
are complete graphs. Let x be the center of D and let z; € D; — {z}
(¢ =1, 2). Since D is an induced subgraph of G, z1z2 ¢ E(G). Since
{z1,22,v} C Ng(z) and G is claw-free, {z1v, 220} N E(G) #0. O

The next lemma shows a relationship between a k-extended system and

a spanning tree with at most k leaves in a claw-free graph.

Lemma 6 Let k > 2 be an integer and G be a connected claw-free graph.
If G has a spanning extended system Fy, then G has a spanning tree with
at most f(Fy) leaves. In particular, if G has a spanning k-extended system,

then G has a spanning tree with at most k leaves.

Proof. Take a spanning extended system F' with f(F) < f(Fp) so that
the number of double complete graphs is as small as possible. Then every
double complete graph of F' is an induced subgraph of G since if two non-
central vertices of a double complete graph D of F' are joined by an edge e
of G, then D + e has a hamiltonian cycle, and so D should be replaced by

this hamiltonian cycle.



Since G is connected, there exists a minimal set X of edges such that
F together with X forms a connected spanning subgraph of G. We shall
construct a spanning tree with at most k leaves consisting of F' and X. By
Lemma 5, we may assume that no edge in X is incident with the center
of a double complete graph. For any double complete graph D of F', there
exists an edge ep € X incident with a vertex vp of D, where vp is not
the center of D. Then D has a hamiltonian path starting at vp, and we
replace D with this hamiltonian path.

For any cycle C of F, there exists an edge ec € X incident with a vertex
ve of C. Delete an edge of C incident with vo. By repeating the above
procedure for every double complete graph and every cycle of F', we obtain
a spanning tree T. By the construction, for each C' € C(F), the number of
leaves of T' contained in C' is at most f(C).

Hence T has at most f(F) < f(Fp) leaves. O

We call a k-extended system F' of G a maximal k-extended system if G
has no k-extended system F’ such that V(F) is a proper subset of V(EF").

In order to prove our theorem, we need the following lemma.

Lemma 7 Suppose that a graph G does not have a spanning k-extended
system. Let F be a maximal (k + 1)-extended system of G. Then G does
not have a k-extended system F' with V(F') = V(F). In particular, F is
not a k-extended system, and so f(F)=Fk+ 1.

Proof. Let F be a maximal (k + 1)-extended system of G. Assume that
G has a k-extended system F’ with V/(F') = V(F'). Since G does not have
a spanning k-extended system, there exists a vertex v € V(G) — V(F"),
and thus G has a (k + 1)-extended system F’ U {v}, which contradicts the

maximality of F'. O
By Lemma 6, in order to prove our Theorem 3, it suffices to prove the

following theorem.

Theorem 8 Let k > 2 be an integer and G be a claw-free graph. If
0k+1(G) > |G| — k, then G has a spanning k-extended system.



Proof. Suppose that G has no spanning k-extended system. Take a max-

imal (k + 1)-extended system F' so that
(F1) > pee,(r) [P] is as large as possible,

(F2) The number of cycles in C;(F') is as large as possible subject to (F1),

and

(F3) ZPGG2(F) (deg<V(P)>G(xp) + deg<V(P)>G(yp)) is as small as possible,
subject to (F1) and (F2), where xp and yp are the end-vertices of P.

By Lemma 7, f(F) = k+ 1. We begin with a simple but important

observation.

Claim 1 For each D € C1(F) and for each v € V(D) that is not the center
of D if D is a double complete graph, D has a hamiltonian path containing

v as one of its end-vertices.

The next claim follows from the condition (F2) and the same argument

as in the first paragraph of the proof of Lemma 6.

Claim 2 FEvery double complete graph D of F is an induced subgraph of
G.

Next, we investigate the adjacency between the components of F.

Claim 3 The following three statements hold.

(i) No two components of C1(F') are connected by an edge of G.

(ii) No end-vertex of a path in C3(F) is connected to a component of C1(F)
by an edge of G.

(iii) No two end-vertices of two distinct paths or of the same path in Co(F)
are joined by an edge of G

Proof. (i) Assume that two components @)1 and Q2 of C;(F') are joined by
an edge e of G. By Lemma 5, we may assume that no end-vertex of e is the
center of a double complete graph. So @1 + e + @2 contains a hamiltonian

path FPy. By replacing (1 and ()2 of F' by Py, we obtain another maximal

10



(k + 1)-extended system F’ on V(F). If |Py] > 4 this contradicts the
condition (F1). If |Py| < 3, then f(Py) = 1 and hence F” is a k-extended
system, which contradicts Lemma 7.

(ii) If an end-vertex of a path P € Co(F) is joined to a component @) €
C1(F) by an edge e of G, then by an argument similar to the one in (i),
we see that P + e + @ has a hamiltonian path. Thus, we can derive a
contradiction by Lemma 7.

(iii) If two end-vertices of two paths or of the same path in C2(F') are joined
by an edge of G, then we can obtain a k-extended system with vertex set
V(F'), which contradicts Lemma 7. O

For every component Q € Ci(F'), we take one vertex zg from @ so
that z¢ is a non-central vertex of @ if @) is a double complete graph. For
every path P € Co(F'), let zp and yp be the two end-vertices of P. Define
End(F) by

End(F)= |J {zo} U |J {zp.ur}
QECL(F) PeCy(F)

Then |[End(F)| = f(F) =k + 1 by Lemma 7. Claim 3 and Lemma 5 yield

the next two claims.
Claim 4 End(F) is an independent set of G.

Claim 5 For every component @ € C1(F) of F and the vertex {zq} =
End(F)NV(Q), it follows that

Y INe@) V(@) =[Ne(zo) nV(Q)| <10l -1 =1Q] - f(Q).

z€End(F)

Now we measure the neighborhood of End(F’) in a path of C(F).

Claim 6 Let P be a path in Co(F). Then for each distinct pair of vertices
z, w in End(F) — {zp,yp}, the following statements hold.

(i) Ng(2) N Ng(w) NV (P) = 0.

(ii) Ng(zp)” N Ng(yp) NV (P) = 0.

(ili) Ng(2)” N Ng(yp) NV(P) =0 and Ng(z)™ N Ng(zp) NV (P) = 0.
(iv) Ng(z) N Ng(zp)NV(P) =0.

11



Proof. Let @ and R be the components of F' containing z and w, respec-
tively.

(i) Suppose Ng(z) N Ng(w) N V(P) # @ and take a vertex v € Ng(z) N
Ng(w) NV (P). Then v # zp,yp by Claim 4. Since {z,w,v"} C Ng(v)
and G is claw-free, zv~ € E(G) or wv~ € E(G). By symmetry, we may
assume that zv~ € E(G). If @ # R, then replace P, @, R of F by two
hamiltonian paths Q' and R in P(zp,v”)+v~ 2+Q and P(yp,v)+vw+R,
respectively. Then we obtain a new (k + 1)-extended system F’ on V(F).
If f(Q)+ f(R) < f(P)+ f(Q) + f(R), then F’ is a k-extended system,
which contradicts Lemma 7. Thus, f(Q') + f(R') > f(P) + f(Q) + f(R).
This is possible only if {Q’, R’} C Co(F') and {Q, R} C C1(F). However,
this contradicts the condition (F1). If @ = R, then @ is a path whose
end-vertices are z and w and P(xp,v")+v 2+ Q + wv + P(v,yp) is a
hamiltonian path of (V(P)UV(Q))¢, and by replacing P and @ with this

path, we have a k-extended system on V(F'), contradicting Lemma 7.

(ii) If Ng(xp)™ N Ng(yp) N V(P) # 0, then (V(P))s has a hamiltonian
cycle, and so G has a k-extended system with vertex set V(F'), which

contradicts Lemma 7.

(iii) By symmetry, it suffices to show that Ng(z)™ N Ng(yp) NV (P) = 0.
Assume that there exists a vertex v € Ng(2)™ N Ng(yp) N V(P). Then
P(zp,v) +vyp + Plyp,v™) + vz + Q has a hamiltonian path of (V(P) U
V(Q))a, and so by replacing P and @ of F' with this path, we have a
k-extended system on V(F'). This contradicts Lemma 7.

(iv) Suppose that there exists a vertex v in Ng(z) N Ng(zp) NV (P). Then
v # yp by Claim 4. Since {vt,z,, 2} C Ng(v) and G is claw-free, we have
vTz € E(G) by (iii) and Claim 4. Suppose that @ is a path of order at
least four. If v # xJ]S, then replace P and @ by the cycle P(zp,v) + vxp
and a hamiltonian path of P(yp,v") + vz + Q. If v = 2}, replace P and
Q with xpv and a hamiltonian path of P(yp,v")+vT2+ Q. In either case,
G has a k-extended system on V(F'), which contradicts Lemma 7.

Next suppose that @ is a cycle. Let us denote the two vertices of

Q adjacent to z by 2z~ and zT. Then since {v,z7,27} C Ng(z) and

12



G is claw-free, we may assume that z7v € E(G) or 272t € E(G) by
symmetry. If 27v € E(G), then P(zp,v) +v2z~ +Q+zvT + P(vT,yp) has
a hamiltonian path, and by replacing P and @) with this path, we again have
a k-extended system on V(F'), a contradiction. Therefore we may assume
that 2~ 2% € E(G). If the order of Q is at least four, replace P and Q with
the path P’ = P(zp,v)+vz+2vT+ P(v",yp) and the cycle Q —z+2727.
If the order of @ is three, replace P and @ with the path P’ and 2= z7.
Then in either case, we obtain a maximal (k + 1)-extended system with
2opeey () [Pl > 2 pee,(p [P|- This contradicts the condition (F1).

We finally consider the case that @ is K;, K5 or a double complete
graph. In this case, consider @ — z and the path P’ = P(zp,v) + vz +
zvt + P(vt,yp). Note that @ — z is empty, K1, K, a double complete
graph or a complete graph of order at least three. In the last case, Q — z
has a hamiltonian cycle. Therefore, by replacing P and @ with P’ and a
certain subgraph of @ — z, we obtain a maximal (k + 1)-extended system
F'with 3 pee, 7y [Pl > 2 pee,(ry [P|- This contradicts the choice (F1)
of F. O

Claim 7 For each P € Co(F),

S |Ne(@) N V(P)| < |P| - £(P).
z€End(F)
Proof. First assume that Ng(z) N V(P) = @ for every z € End(F) —
{zp,yp}. Let H = (V(P))q. By the condition (F3), for each hamiltonian
path P* of H,

Z (deg(v ()6 (@) +deg vy (@) +degy (xp-)+degy (yp+)
QEeC(F)—{P}

> Y (degig)e (mq) + degigys (¥Q)),
QG@z(F)

which implies degy(zp+) + degy(yp+) > degy(zp) + degy(yp). Thus,
if degy(xp) + degy(yp) > |H| — 1, then by Lemma 4, either H has a

hamiltonian cycle or H is a double complete graph. Then whichever occurs,

13



we can replace P with an appropriate subgraph of H to obtain a k-extended

system on V(F), which contradicts Lemma 7. Therefore,

> |Na(@)nV(P)| = [Na(zp) NV(P)| + [Na(yp) N V(P)]
z€End(F)

= degy (zp) +degy(yp) < |H| =2 =|P| = f(P).

Next we assume that Ng(21) NV (P) # 0 for some vertex z; € End(F)—
{zp,yp}. Let v € Ng(z1) NV (P), P, = P(xp,v") and P, = P(v",yp).
Then |P| = |Pi| + |P;| + 1. By Claim 6 (i)-(iv), (Ng(zp) NV (P)) ,
Ng(yp) NV(Py) and

((Ne(z) v (P))

z€End(F)—{zp,yp}

are well-defined and these k + 1 sets are pairwise disjoint. Moreover, they

do not contain v~ by Claim 6 (iii). Thus

Z ‘NG(Z) N V(P1)| <|P| -1
z€End(F)
By symmetry of Py and P, we obtain 3,4 ‘NG (z)ﬁV(Pg)‘ < |Pe]-1.
By Claim 6 (i) and (iv), v is not adjacent to any vertex in End(F') — {z},
and 80 3 cp,qcr) [Na(2) N{v}| = 1. By summing these three inequalities,

we have
Y |Na2)nV(P) = > [Na(z)nV(P)|+ > |Na(z) V(R
z€End(F) z€End(F) z€End(F)

+ > |Ne(z)n{v}]

z€End(F)

S|P =14 |P—1+1
=|P|=2=[P|-f(P). O

We now prove Theorem 8. Assume that Ng(z) N Ng(w) — V(F) # 0
for some z, w € End(F) with z # w. Let P and @ be the components of
F that contain z and w, respectively (possibly P=Q). Let a € Ng(z) N
Ng(w) — V(F). If P # @, then since P and @ have hamiltonian paths
which contain z and w as an end-vertex, respectively, P 4+ za + aw + Q)

contains a hamiltonian path. By replacing P and @ with this path, we
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obtain a new (k + 1)-extended system F’ with V(F') = V(F) U {a}. This
contradicts the maximality of F'. If P = @), then we may assume z = xp,
and w = yp, for some Fy. Then by replacing P with a cycle P + az + zw,
we again obtain a (k + 1)-extended system F’ with V(F') = V(F) U {a},
a contradiction. Therefore, we have Ng(z) N Ng(w) — V(F) = ( for each

distinct pair of vertices z and w in End(F"). Hence

Yo INa(z)n (V@) = V()] < [V(G) = V(F)| = |G| - |F|.

z€End(F)

Then by Claims 5 and 7, we obtain

Z degn(z) = Z Z |Na(2) NV(O)|

z€End(F) CeC(F) zeEnd(F)
+ > |Na(z2)n (V(G) = V(F))|
z€End(F)
< Y (o= f(O) + |G| - |F|
CEC(F)
= |Fl=f(F)+ |G| - |F]|
= |G| —k—1.

This contradicts the condition o;4+1(G) > |G| — k, and Theorem 8 follows.
O

3 Maximum Degree

A tree of maximum degree at most k is called a k-tree. Under the same
assumption as that of Theorem 3, we can actually guarantee the existence

of a 3-tree with at most k leaves.

Theorem 9 Let k > 2 be an integer and let G be a connected claw-free
graph. If o11(G) > |G| — k, then G has a spanning 3-tree with at most k

leaves.

In order to prove the above theorem, it suffices to prove the following

lemma.
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Lemma 10 Let k > 2 be an integer. If a connected claw-free graph G has
a spanning tree with at most k leaves, then G has a spanning 3-tree with at

most k leaves.

Proof. Let u be an arbitrary vertex in GG, and consider every spanning
tree as a rooted tree with root u. Choose a spanning tree T with at most &k
leaves so that erV(T) distr(u, ) is as large as possible, where disty(z, y)
is the distence in T between two vertices z and y. Assume T has a vertex
w of degree at least four. Then w has at least three children, and since G is
claw-free, w has a pair of children v; and vy which are adjacent with each
other in G. Let T = T — wv; +v1v2. Then T” is a spanning tree of G, and
degy (w) = degyp(w) —1, degy (v2) = degyp(v2)+1 and degy (2) = degp(z)
for each z € V(G)—{w, va}. Since degp(w) > 4, T' does not have the larger
number of leaves than T'.

Let z € V(G). Then T has a unique uz-path P. If P still exists in
T’, we have distr(u,z) = distys(u,2z). If P does not exist in 7”, then
wvy € E(P) and P’ = P(u,w) + wvy + vavy + P(v1,x) is a unique uz-path
in T'. This implies disty (u, x) = distr(u, ) + 1. Therefore, distys (u,x) >
distr(u, z) for each x € V(G) and disty (u,v) > distr(u,v). These imply
>vev(e) distr(u, ) > 37, v (g distr(u, ). This contradicts the choice
of T, and hence we have A(T) <3 O

4 Concluding Remarks

Matthews and Sumner [5] proved that a 2-connected claw-free graph of
minimum degree at least % (|G| — 2) has a hamiltonian cycle. This result

was later extended by Zhang [11].

Theorem 11 (Zhang [11]) A k-connected claw-free graph G with 11 (G) >

|G| — k has a hamiltonian cycle.

Interpreting a hamiltonian cycle as a “spanning tree with one leaf” and

comparing Theorems 3 and 11, we may make the following conjecture.
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Conjecture 12 For integers k and m with k > 2 and m < min{6,k — 1},
every m-connected claw-free graph G with o41(G) > |G|—k has a spanning

tree with at most k —m + 1 leaves.

The assumption m < 6 in the above conjecture looks strange, but it

comes from the following theorem by Ryjacek [7].

Theorem 13 (Ryjacek [7]) Every 7-connected claw-free graph is hamil-

tonian.

By the above theorem, a 7-connected claw-free graph has a spanning

tree with two leaves without any degree sum condition.
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